Study of resistance of grape shoots to low temperatures when treated with abscisic acid
https://doi.org/10.26897/0021-342X-2025-1-124-136
Abstract
The studies were conducted on the plots of the ampelographic collection of the Anapa Zonal Experimental Station of Viticulture and Winemaking in 2023–2024. The aim of the research is to study the resistance of Dmitry grape shoots to low negative temperatures during the winter period when treated with abscisic acid (ABA) of various concentrations with the addition of magnesium sulfate. The plants were treated at the end of the growing season. Four treatment options were used: 1) 50 mM ABA + 42mM/l magnesium sulfate solution; 2) 100 mM ABA + 42mM/l magnesium sulfate solution; 3) 200 mM ABA + 42mM/l magnesium sulfate solution; 4) control – treatment with tap water. In January, during the period of maximum resistance to low temperatures, the treated shoots were artificially frozen in a CM-30/100–120 climate chamber at the temperatures of –15°C, –20°C, –25°C. Treatment with ABA at different concentrations increased the viability of the buds, but the maximum effect was obtained when using an ABA concentration of 200 mM + 42mM/l magnesium sulfate solution. This treatment increased the percentage of viable buds at –15°C by 16.1%; at –20°C by 32.8%; at –25°C by 75.3%, resulting in an increase in bud viability to 96.2–98.2%. It was found that the treatment increases the content of glycols, which act as cryoprotectors, and also reduces the vulnerability of cell membranes to damage, stabilizng them and reducing the release of potassium and calcium ions. The data obtained indicate the possibility of using ABA for autumn treatment of grapes to increase resistance to low negative temperatures in winter.
About the Authors
G. K. KiselevaRussian Federation
Galina K. Kiseleva, CSc (Bio), Associate Professor, Senior Research Associate
39 40-letiya Pobedy st., Krasnodar, 350901
Yu. F. Yakuba
Russian Federation
Yuriy F. Yakuba, DSc (Chem), Associate Professor, Head of Information and Analytical Laboratory
39 40-letiya Pobedy st., Krasnodar, 350901
V. S. Petrov
Russian Federation
Valeriy S. Petrov, DSc (Ag), Associate Professor, Leading Research Associate
39 40-letiya Pobedy st., Krasnodar, 350901
I. A. Ilyina
Russian Federation
Irina A. Ilyina, DSc (Tech), Professor, Deputy Chief for Science
39 40-letiya Pobedy st., Krasnodar, 350901
N. M. Zaporozhets
Russian Federation
Natalia M. Zaporozhets, CSc (Ag), Scientific Secretary
39 40-letiya Pobedy st., Krasnodar, 350901
A. A. Khokhlova
Russian Federation
Anna A. Khokhlova, CSc (Bio), Research Associate
39 40-letiya Pobedy st., Krasnodar, 350901
References
1. Кузнецова И.Б., Макаров С.С. Особенности клонального микроразмножения культурного винограда (Vitis vinifera L.) на этапах «введение в культуру» и «собственно микроразмножение» // Известия Оренбургского государственного аграрного университета. 2021. № 4 (90). С. 72-75. https://doi.org/10.37670/2073-0853-2021-90-4-72-75
2. Площади, валовой сбор и урожайность многолетних насаждений в Российской Федерации в 2023 году: Бюллетень. URL: https://rosstat.gov.ru/compendium/document/13277 (дата обращения: 12.09.2024).
3. Егоров Е.А., Серпуховитина К.А., Петров В.С., Панкин М.И. и др. Адаптивный потенциал винограда в условиях стрессовых температур зимнего периода: Методические рекомендации. Краснодар: СКЗНИИСиВ, 2006. 156 с. EDN: QKYYOV.
4. Ненько Н.И., Киселева Г.К., Ильина И.А., Петров В.С. и др. Морозостойкость сортов винограда различного эколого-географического происхождения // Садоводство и виноградарство. 2021. № 4. С. 37-42. https://doi.org/10.31676/0235-2591-2021-4-37-42
5. Lepeshkina S., Yakuba Yu. Protection of Vine from Winter Stress with the Use of Silicate. International Journal of Pharmacy and Chemistry. 2023;9(3):28-31. https://doi.org/.11648/j.ijpc.20230903.11
6. Ghali M., Jaballah M.B., Arfa N.B., Sigwalt A. Analysis of Factors that Infuence Adoption of Agroecological Practices in Viticulture. Review of Agricultural, Food and Environmental Studies. 2022;103:179-209. https://doi.org/10.1007/s41130-022-00171-5
7. Kaya Ö., Yilmaz T., Ates F. Improving Organic Grape Production: the Effects of Soil Management and Organic Fertilizers on Biogenic Amine Levels in Vitis vinifera cv. «Royal» Grapes. Chem. Biol. Technol. Agric. 2024;11:38. https://doi.org/10.1186/s40538-024-00564-2
8. Wan N., Yang B., Yin D., Ma T. et al. Overwintering Covered with Soil or Avoiding Burial of Wine Grapes under Cold Stress: Chinese Wine Industry’s Past and Future, Challenges and Opportunities. Stress Biology. 2023;3(1):40. http://creativecommons.org/licenses/by/4.0/.
9. Frota de Albuquerque Landi F., Di Giuseppe A., Gambelli A.M., Palliotti A. et al. Life Cycle Assessment of an Innovative Technology against Late Frosts in Vineyard. Sustainability. 2021;13:5562. https://doi.org/10.3390/su13105562
10. Giuseppe A., Gambelli A., Rossi F., Nicolini A. et al. Natural Organic Coating to Control and Minimize Late Frost Damages on Wine Shoots. Heat. 2020;51(18):1625-1635. https://doi.org/:10.1615/HeatTransRes.2020034721
11. Lixandru M., Fendrihan S. Improvement of Frost Resistance of Grapevine. Romanian Journal for Plant Protection. 2020;13:28-30. http://www.doi.org/10.54574/RJPP.13.04
12. Karimi R., Ershadi A. Role of Exogenous Abscisic Acid in Adapting of ‘Sultana’ Grapevine to Low-temperature Stress. Acta Physiol. Plant. 2015;37:151. https://doi.org/:10.1007/s11738-015-1902-z
13. Wang H., Blakeslee J.J., Jones M.L., Chapin L.J. et al. Exogenous Abscisic Acid Enhances Physiological, Metabolic, and Transcriptional Cold Acclimation Responses in Greenhouse-grown Grapevines. Plant Science. 2020;293:110437. https://doi.org/10.1016/j.plantsci.2020.110437
14. Wang H., Dami I.E. Evaluation of Budbreak-delaying Products to Avoid Spring Frost Injury in Grapevines // American Journal of Enology and Viticulture. 2020;71(3):181-190. https://doi.org/10.5344/ajev.2020.19074
15. Karimi М. Potassium-induced Freezing Tolerance is Associated with Endogenous Abscisic Acid, Polyamines and Soluble Sugars Changes in Grapevine. Scientia Horticulturae. 2017;215:184-194. https://doi.org/10.1016/j.scienta.2016.12.018
16. Sarikhani H., Haghi H., Ershadi A., Esna-Ashari M. et al. Foliar Application of Potassium Sulphate Enhances the Cold-hardiness of Grapevine (Vitis vinifera L.). The Journal of Horticultural Science and Biotechnology. 2014;89(2):141-146. https://doi.org/10.1080/14620316.2014.11513060
17. Yashin Ya.I., Yashin A.Ya. Analytical Chromatography. Methods, Instrumentation and Applications. Russ. Chem. Rev. 2016;75(4):329-340. https://doi.org/10.1070/RC2006v075n04ABEH003607
18. Melicherova N., Reminek R., Foret F. Application of Capillary Electrophoretic Methods for the Analysis of Plant Phloem and Xylem Saps Composition: A Review. Separation Science. 2020;43(1):271-284. https://doi.org/10.1002/jssc.201900844
19. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). Москва: Альянс, 2011. 351 с. EDN: QLCQEP.
20. Dami I., Zhang Y. Variations of Freezing Tolerance and Sugar Concentrations of Grape Buds in Response to Foliar Application of Abscisic Acid. Frontiers in Plant Science. 2023;14:1084590. https://doi.org/10.3389/fpls.2023.1084590
21. Kaya Ö. Bud Death and Its Relationship with Lateral Shoot, Water Content and Soluble Carbohydrates in Four Grapevine Cultivars Following Winter Cold. Erwerbs-Obstbau. 2020;62(1):43-50. https://doi.org/10.1007/s10341-020-00495-w
22. Кошкин Е.И. Физиология устойчивости сельскохозяйственных культур: Учебник. Москва: Дрофа, 2010. 638 с. EDN: SDTWVB.
23. Luo D., Huang T., Kou X., Zhang Y. et al. MeJA Enhances Antioxidant Activity and Reduces Membrane Lipid Degradation by Maintaining Energy Charge Levels in Crystal Grapes. Postharvest Biology and Technology. 2024;216:113078. https://doi.org/10.1016/j.postharvbio.2024.113078
Review
For citations:
Kiseleva G.K., Yakuba Yu.F., Petrov V.S., Ilyina I.A., Zaporozhets N.M., Khokhlova A.A. Study of resistance of grape shoots to low temperatures when treated with abscisic acid. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2025;(1):124-136. (In Russ.) https://doi.org/10.26897/0021-342X-2025-1-124-136