Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

Modified composition of microbial community in the rhizosphere of transgenic tomato plants with a glycine betaine syntesis gene

https://doi.org/10.26897/0021-342X-2020-5-18-29

Abstract

The change in the composition of soil microbiota as a result of the cultivation of various crops in agrocenoses is currently of great interest. The authors studied the effect of the root system of transgenic tomato plants (Solanum lycopersicum L.) grown in soil culture on the microbial community in the rhizosphere. The results showed that as a result of the cultivation of transgenic plants with the choline oxidase gene, the microbial community composition in the rhizosphere has changed significantly. A significant increase in the proportion (73%) and species diversity (Shannon index 2.25) of actinobacteria in the soil root zone of tomato transgenic codA plants as compared with control plants (10% and 0.95, respectively) has been revealed. The content of pseudomonads and micromycetes is significantly reduced (25 and 12% in transgenic plants; 70 and 81% in control plants, respectively). Thus, genetically modified plants are able to influence the microbial community structure in the rhizosphere.

About the Authors

Aleksei A. Antonov
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


Ekaterina N. Baranova
All-Russian Research Institute of Agricultural Biotechnology (RAAS); N.V Tsitsin Main Botanical Garden of RAS
Russian Federation


Aleksandr A. Gulevich
All-Russian Research Institute of Agricultural Biotechnology (RAAS)
Russian Federation


Lyudmila V. Kurenina
All-Russian Research Institute of Agricultural Biotechnology (RAAS)
Russian Federation


Anna A. Vankova
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


Galina N. Raldugina
Timiryazev Institute of Plant Physiology (RAS)
Russian Federation


References

1. Алексеева А. С. Сравнительная характеристика микробиоценоза ризосферы и ризопланы Lycopersicum esculentum Mill. / А.С. Алексеева, Н.И. Потатуркина-Нестерова // Современные проблемы науки и образования. - 2014. - № 6. - С. 70-81.

2. Гулевич А.А. Генно-инженерный подход в решении «неразрешимых» задач ремедиации почв / А.А. Гулевич, Е.Н. Баранова, И.Г. Широких, А.А. Широких // Теоретическая и прикладная экология. - 2018. - № 2. - С. 5-15.

3. Гулевич А.А. Использование системы таргетинга ферментов Fe-зависимой супероксиддисмутазы и холинокидазы в хлоропласт как стратегия эффективной защиты растений от абиотических стрессов / А.А. Гулевич, Л.В. Куренина, Е.Н. Баранова // Российская сельскохозяйственная наука. - 2018. - № 1. - С. 7-12.

4. Лысак Л.В. Методы оценки бактериального разнообразия почв и идентификации почвенных бактерий / Л.В. Лысак. - М.: МАКС Пресс, 2003. - С. 121.

5. Тетер Е.З. Практикум по микробиологии / Е.З. Теппер, В.К. Шильникова, Г.И. Переверзева. - 4-е изд., перераб. и доп. - М.: Колос, 1993. - С. 175.

6. Широких И.Г. Изменение структуры комплексов актиномицетов в ризосфере трансгенных по гену Fe-SOD1 линий томата (Solanum lycopersicum L., Solanaceae, Solanales) / И.Г. Широких, Я.И. Назарова, С.Ю. Огородникова, Е.Н. Баранова // Поволжский экологический журнал. - 2016. - № 3. - С. 341-351.

7. Bais H.P. The role of root exudates in rhizosphere interactions with plants and other organisms / Н.Р. Bais, T.L. Weir, L.G. Perry, S. Gilroy, J.M. Vivanco // Annual Review of Plant Biology. - 2006. - V. 57. - P. 233-266.

8. Broeckling C.D. Root exudates regulate soil fungal community composition and diversity / C.D. Broeckling, А.К. Broz, J. Bergelson, D.K. Manter, J.M. Vivanco // Applied and Environmental Microbiology. - 2008. - V. 74. - P. 738-744.

9. Cirvilleri G. Characterization of antagonistic root-associated fluorescent pseudomonads of transgenic and non-transgenic citrange Troyer plants / G. Cirvilleri, S. Spina, G. Scuderi, А. Gentile, А. Catara // Journal ofPlant Pathology. - 2005. - V. 87. - P. 179-186.

10. Dunfield K.E. Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus / К.Е. Dunfield, J.J. Germida // FEMS Microbiology Ecology. - 2001. - V. 38. - P. 1-9.

11. Flowers T.J. Solute transport in plants / TJ. Flowers, A.R. Yeo // Springer Netherlands, 2012. - 176 p.

12. Folman L.B. Ecophysiological characterization of rhizosphere bacterial communities at different root locations and plant developmental stages of cucumber grown on rockwool / L.B. Folman, J. Postma, J.A. Veen // Microbial ecology. - 2001. - V. 42. -P. 586-597.

13. Griffiths B.S. Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes / B.S. Griffiths, I.E. Geoghegan, W.M. Robertson // Journal of Applied Ecology. - 2000. - V. 37. - P. 159-170.

14. Heuer H. Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors / Н. Heuer, R.M. Kroppenstedt, J. Lottmann, G. Berg, К. Smalla // Applied and Environmental Microbiology. -2002. - V. 68. - P. 1325-1335.

15. Honsbein A. A molecular framework for coupling cellular volume and osmotic solute transport control / А. Honsbein, M.R. Blatt, С. Grefen // Journal of Experimental Botany. - 2010. - V. 62. - P. 2363-2370.

16. Li P., Dong J., Yang S., Bai L., Wang J., Wu G., Wu X., Yao Q., TangX. Impact of P-carotene transgenic rice with four synthetic genes on rhizosphere enzyme activities and bacterial communities at different growth stages. European journal of soil biology // 2014. V. 65. P. 40-46.

17. Liang J., Sun S., Ji J., Wu H., Meng F., Zhang M., Zheng X., Wu C., Zhang Z. Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar // PLoS One. 2014. V. 9. e103343.

18. Lottmann J., Heuer H., de Vries J., Mahn A., During K., Wackernagel W., Smalla K., Berg G. Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community // FEMS Microbiology Ecology. 2000. V. 33. P. 41-49.

19. Motavalli P.P., Kremer R.J., Fang M., Means N.E. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations // Journal of environmental quality. 2004. V. 33. P. 816-824.

20. Murashige T., Skoog F. A revised medium for rapid growth and bioаssays with tobacco tissue culture // Physiologia Plantarum. 1962. V. 15. P. 473-497

21. Savage J.A., Clearwater M.J., Haines D.F., Klein T., Mencuccini M., Sevanto S., Turgeon R., Zhang C. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? // Plant, Cell and Environment. 2016. V. 39. P. 709-725.

22. Siciliano S.D., Germida J.J. Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland // FEMS Microbiology Ecology.1999. V. 29. P. 263-272.

23. Tian H., De Smet I., Ding Z. Shaping a root system: regulating lateral versus primary root growth // Trends in Plant Science. 2014. V. 19. P. 426-431.

24. Verbruggen N., Hermans C. Proline accumulation in plants: a review // Amino acids. 2008. V. 35. P. 753-759.

25. Zhao X., Jiang Y., Liu Q., Yang H., Wang Z., Zhang M. Effects of Drought-Tolerant Ea-DREB2B Transgenic Sugarcane on Bacterial Communities in Soil // Frontiers in Microbiology. 2020. V. 11. 704.


Review

For citations:


Antonov A.A., Baranova E.N., Gulevich A.A., Kurenina L.V., Vankova A.A., Raldugina G.N. Modified composition of microbial community in the rhizosphere of transgenic tomato plants with a glycine betaine syntesis gene. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2020;(5):18-29. (In Russ.) https://doi.org/10.26897/0021-342X-2020-5-18-29

Views: 112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)