Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

Light spectral composition effects on raspberry and blackberry microclones morphophysiological traits in vitro

https://doi.org/10.26897/0021-342X-2020-2-54-63

Abstract

The article presents the results of research on the effects of light spectral composition on the morphophysiological parameters of microclones of raspberries (variety Orange miracle) and blackberries (variety Black satin), cultivated in vitro. The high efficiency of using narrow-band and wide-band light-emitting diodes (LEDs) for these purposes is shown. It was found that optical radiation in the studied spectral ranges provided various effects on the growth of plant microshoots, as well as the reproduction coefficient. In a comparative study of the effects of different light sources, the most intense growth of raspberry and blackberry microshoots and an increase in the multiplication coefficient were observed when using LEDs of the blue spectrum and white LEDs with color temperature 2500 K. Quasimonochromatic green light was favorable for raspberry plants, but not for blackberries. In plant responses to light spectral modes, species and varietal differences appear, which must be taken into account when developing technologies for their light culture in vitro.

About the Authors

Elena A. Kalashnikova
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


Lilia A. Gud
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


Alexander A. Anisimov
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


Rima N. Kirakosyan
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


Andon Vassilev
Agricultural University of Plovdiv
Russian Federation


Ivan G. Tarakanov
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


References

1. Калашникова Е.А. Клеточная инженерия растений. М.: РГАУ-МСХА. 2012.347 с.

2. Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнологии на их основе. М.: ФБК-ПРЕСС. 1999. 172 с.

3. Калашникова Е.А., Чередниченко М.Ю. Основы биотехнологии. М.: РГАУ-МСХА. 2016. 138 с.

4. Bello-Bello J.J., Pérez-Sato J.A., Cruz-Cruz C.A., Martinez-Estrada E. Light-Emitting Diodes: Progress in Plant Micropropagation / In: Chlorophyll, Chapter 6, INTECH. Eds. E. Jacopo-Lopes M.I. Queiroz, L.Q. Zepka. 2017. P. 93-103.

5. Тараканов И.Г., Яковлева О. С. Влияние качества света на физиологические особенности и продукционный процесс базилика эвгенольного (Ocimum gratissimum L.). // Естественные науки. 2012. № 3. С. 95-97.

6. Kim S.J., Hahn E.J., Heo J.W., Paek K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro // Sci. Hort. 2004. V. 101. P. 143-151.

7. Kim H.H., Goins G.D., Wheeler R.M., Sager J.C. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes // Hort. Sci. 2004. V. 39. P. 1617-1622.

8. George E.F. Plant Propagation by Tissue Culture. Part 1: The Technology. West-bury: Exegetics Ltd. 1993. 574 P.

9. Kumar A., Palni L.M.S., Nandi S.K. The effect of light source and gelling agent on micropropagation of Rosa damascene Mill. and Rhynchostylis retusa L. // Bl.J. Hort. Sci. Biotech. 2003. V. 78. P. 786-792.

10. Hammerschlag F. Factors influencing in vitro multiplication and rooting of the plum rootstock myrobalan (Prunus cerasifera Ehrh.) // J. Amer. Soc. Hort. Sci. 1982. V. 107. P. 44-47.

11. Lian M.L., Murthy H.N., Paek K.Y. Culture method and photosynthetic photon flux affect photosynthesis, growth and survival of Limonium ‘Misty Blue’ in vitro // Sci. Hort. 2002. V. 95. P. 239-249.

12. Gupta S.D., Jatothu B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis // Plant Biotechnology Reports. 2013. V. 7. P. 211-220.

13. Murashige T., Skoog F.A. A revised medium for rapid growth and bioassays with tobacco tissue culture // Physiol. Plant. 1962. V. 15. Р. 473-497.

14. Прикупец Л.Б., Боос Г.В., Терехов В.Г., Тараканов И.Г. Исследование влияния излучения в различных диапазонах области ФАР на продуктивность и биохимический состав биомассы салатно-зеленных культур // Светотехника. 2018. № 5. С. 6-12.

15. Dewir Y.H., Chakrabarty D., Kim S.J., Hahn E.J., Paek K.Y. Effect of light-emitting diode on growth and shoot proliferation of Euphorbia millii and Spathiphyllum can-nifolium // Horticulture, Environment, and Biotechnology. 2005. V. 46. P. 375-379.

16. Jao R.C., Lai C.C., Fang W., Chang S.F. Effects of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light-emitting diodes // Hort. Sci. 2005. V. 40. P. 436-438.

17. Tennessen D.J., Singsaas E.L., Sharkey T.D. Light-emitting diodes as a light source for photosynthesis research // Phot. Res. 1994. V. 39. P. 85-92.

18. Li H., Xu Z., Tang C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro // Plant Cell, Tissue and Organ Culture. 2010. V. 103. P. 155-163.


Review

For citations:


Kalashnikova E.A., Gud L.A., Anisimov A.A., Kirakosyan R.N., Vassilev A., Tarakanov I.G. Light spectral composition effects on raspberry and blackberry microclones morphophysiological traits in vitro. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2020;(2):54-63. (In Russ.) https://doi.org/10.26897/0021-342X-2020-2-54-63

Views: 133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)