Solutions for intestinal health: a new direction in feeding monogastric animals (review)
Abstract
Realizing the genetic potential of monogastric animals depends on a well-functioning gastrointestinal tract, which not only digests and absorbs nutrients but also protects against harmful microflora. This intestinal function is energetically expensive, requiring up to 40% of daily protein and energy intake to support rapid enterocyte turnover – these cells are replaced approximately every three days. This article reviews current perspectives on using probiotics, prebiotics, and butyric acid-based complexes in modern industrial pig and poultry farming. Studies examining the effects of probiotics with varying compositions on the gastrointestinal microflora of monogastric animals are discussed. Furthermore, the article highlights how these feed additives can enhance animal resistance to intestinal diseases by inhibiting pathogen colonization, boosting immunity, and improving nutrient availability in poultry and pigs.
Keywords
About the Authors
N. P. BuryakovRussian Federation
Nikolay P. Buryakov, DSc (Bio), Professor, Head of the Department of Animal Feeding
49 Timiryazevskaya St., Moscow, 127550
V. V. Menberg
Russian Federation
Viktor V. Menberg, postgraduate student of the Department of Animal Feeding
49 Timiryazevskaya St., Moscow, 127550
References
1. Buyarov A.V., Buyarov V.S. Animal husbandry and poultry farming in Russia: current state and development trends in modern economic conditions. Vestnik of Voronezh State Agrarian University. 2022;15(4(75)):108-123. (In Russ.) https://doi.org/10.53914/issn2071-2243_2022_4_108
2. Zorina E.G. Problems and prospects of food security under sanctions. IV Mezhdunarodnaya nauchno-prakticheskaya konferentsiya studentov, aspirantov i molodykh uchenykh ‘Molodezhnaya nauka – razvitiyu agropromyshlennogo kompleksa’. November 15, 2022. Kursk, Russia: Kursk State Agricultural Academy named after I.I. Ivanov, 2024:190-197. (In Russ.)
3. Giraldo P.A., Shinozuka H., Spangenberg G.C. et al. Safety Assessment of Genetically Modified Feed: Is There Any Difference From Food? Front. Plant Sci. 2019;10:1592. https://doi.org/10.3389/fpls.2019.01592
4. Kovalyov Yu. Pig production development: a new stage ahead. Zhivotnovodstvo Rossii. 2024;(2):22-24. (In Russ.)
5. Hardy H., Harris J., Lyon E., Beal J., Foey A.D. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients. 2013;5:1869-1912.
6. Aleshin D.E. Biotechnological industry products in animal feeding: probiotics, prebiotics, symbiotics, synbiotics and postbiotics. In: Abdullazyanov E.Yu., Akanova A.N., Akramov B.Sh., Aleshin D.E. et al. Fundamental and applied science: status and development trends: a monograph. Petrozavodsk, Russia: Mezhdunarodniy tsentr nauchnogo partnerstva “Novaya Nauka” (IP Ivanovskaya I.I.), 2024:296-343. (In Russ.)
7. Kosolapova V.G., Buryakov N.P., Aleshin D.E. et al. Scientific and economic justification of application ofsymbiotic polycomponent fodder additive in feeding high productive cows. IOP Conf. Ser.: Earth Environ. Sci. 2021;901:012026. https://doi.org/10.1088/1755-1315/901/1/012026
8. Khadija A.A. The synergistic effects of probiotic microorganisms on the microbial production of butyrate in vitro. McNair Scholars Research Journal. 2009;2(1):103-114.
9. Bolton W., Dewar W.A. The digestibility of acetic, propionic and butyric acids by the fowl. British Poultry Science. 1965;6(2):103-105.
10. Afonso E.R., Parazzi L.J., Marino C.T. et al. Probiotics association in the suckling and nursery in piglets challenged with Salmonella typhimurium. Braz Arch Biol Technol. 2013;56:249-258. http://doi.org/10.1590/S1516-89132013000200010
11. Ahmadifar E., Dawood M.A., Moghadam M.S. et al. The effect of Pediococcus acidilactici MA 18/5 M on immune responses and mRNA levels of growth, antioxidant and immune-related genes in zebrafish (Danio rerio). Aquaculture Rep. 2020;17:100374. https://doi.org/10.1016/j.aqrep.2020.100374
12. Ahmed S., Hoon J., Hong-Seok M., Chul-Ju Y. Evaluation of Lactobacillus and Bacillus-based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr. J. Microbiol. Res. 2014;8(1):96-104. http://doi.org/10.5897/AJMR2013.6355
13. Baker A.A., Davis E., Spencer J.D. et al. The effect of a Bacillus-based direct-fed microbial supplemented to sows on the gastrointestinal microbiota of their neonatal piglets. J. Animal Sci. 2013;91(7):3390-3399. http://doi.org/10.2527/jas.2012-5821
14. Barba-Vidal E., Castillejos L., Roll V.F. et al. The probiotic combination of Bifidobacterium longum subsp. Infantis CECT 7210 and Bifidobacterium animalis subsp. Lactis BPL6 reduces pathogen loads and improves gut health of weaned piglets orally challenged with Salmonella Typhimurium. Front Microbiol. 2017;8:1570. http://doi.org/10.3389/fmicb.2017.01570
15. Ding H., Zhao X., Azad M.A.K. et al. Dietary supplementation with Bacillus subtilis and xylo-oligosaccharides improves growth performance and intestinal morphology and alters intestinal microbiota and metabolites in weaned piglets. Food Funct. 2021;12(58):5837-5849. https://doi.org/10.1039/d1fo00208b
16. Chen Y., Xie Y., Zhong R. et al. Effects of xylo-oligosaccharides on growth and gut microbiota as potential replacements for antibiotic in weaning piglets. Front. Microbiol. 2021;12:641172. https://doi.org/10.3389/fmicb.2021.641172
17. Kherade M., Solanke S., Tawar M., Wankhede S. Fructooligosaccharides: A comprehensive review. J. Ayu. Herb Med. 2021;7(3):193-200. https://doi.org/10.31254/jahm.2021.7305
18. Asbury R.E., Saville B.A. Manno-oligosaccharides as a promising antimicrobial strategy: pathogen inhibition and synergistic effects with antibiotics. Front. Microbiol. 2025;16:1529081. https://doi.org/10.3389/fmicb.2025.1529081
19. Zhou M., Tao Y., Lai C. et al. Effects of mannanoligosaccharide supplementation on the growth performance, immunity, and oxidative status of partridge shank chickens. Animals. 2019;9:817. https://doi.org/10.3390/ani9100817
20. Aruwa C.E., Pillay C., Nyaga M.M. et al. Poultry gut health – microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J Animal Sci Biotechnol. 2021;12:119. https://doi.org/10.1186/s40104-021-00640-9
21. Kuzmina I.V., Tolpygo S.M., Kotov A.V. et al. Intestinal digestion in poultry compared to other animal species with a diverse diet. Front. Physiol. 2024;15:1358524. https://doi.org/10.3389/fphys.2024.1358524
22. Fisinin V.I., Egorov I.A., Manukyan V.A., Lenkova T.N. et al. State of the gastrointestinal tract microflora of laying hens when replacing corn with wheat in compound feed. Poultry & Chicken Products. 2016;(6):33-36. (In Russ.)
23. Cai L., Indrakumar S., Kiarie E., Kim I.H. Effects of a multi-strain Bacillus species-based direct-fed microbial on growth performance, nutrient digestibility, blood profile, and gut health in nursery pigs fed corn-soybean meal-based diets. J Anim Sci. 2015;93:4336-4342. https://doi.org/10.2527/jas.2015-9056
24. Che L., Hu L., Liu Y. et al. Dietary nucleotides supplemen-tation improves the intestinal development and immune function of neonates with intra-uterine growth restriction in a pig model. PLoS ONE. 2016;11(6): e0157314. https://doi.org/10.1371/journal.pone.0157314
25. Barilo O.A., Berlinskiy Yu.R., Merzlenko R.A., Mingaleeva L.A. Relevance of the use of probiotics and prebiotics in animal husbandry and veterinary medicine. Actual Issues in Agricultural Biology. 2023;(2(28)):5-9. (In Russ.)
26. Murashov A.G., Ermolova E.M., Ermolov S.M., Rebezov M.B. et al. Use of a probiotic in the diet of sows. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2021;(5):234-238. (In Russ.)
27. Kaloev B.S. Influence of complex use of enzyme, probiotic and prebiotic preparations on broiler chickens’ meat qualities. Proceedings of Gorsky State Agrarian University. 2021;58-2:71-76. (In Russ.)
28. Liu Y. Fatty acids, inflammation and intestinal health in pigs. J Animal Sci Biotechnol. 2015;6:41. https://doi.org/10.1186/s40104-015-0040-1
29. Barba-Vidal E., Martín-Orúe S.M., Castillejos L. Practical aspects of the use of probiotics in pig production: A review. Livestock Science. 2019;223:84-96. http://doi.org/10.1016/j.livsci.2019.02.017
30. Gan F., Chen X., Liao S.F. et al. Selenium-enriched probiotics improve antioxidant status, immune function, and selenoprotein gene expression of piglets raised under high ambient temperature. J Agric Food Chem. 2014;62:4502-4508. https://doi.org/10.1021/jf501065d
31. Giang H., Viet T., Ogle B. Effects of supplementation of probiotics on the performance, nutrient digestibility and faecal microflora in growing-finishing pigs. Asian Australas. J. Anim. Sci. 2011;24(5):655-661. http://doi.org/10.5713/ajas.2011.10238
32. Giang H.H., Viet T.Q., Ogle B., Lindberg J.E. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest Sci. 2012;143(2-3):132-141. http://doi.org/10.1016/j.livsci.2011.09.003
33. Zabashta N.N., Golovko E.N., Sinelshchikova I.A. Correction of intestinal microbiocenosis in monogastrics. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N.E. Baumana. 2024;260(40):98-104. (In Russ.) https://doi.org/10.31588/2413_4201_1883_4_260_98
34. Zabolotskaya T.V., Panyavina K.D., Shtaufen A.V. Interaction of yeast glucomannans with pathogenic and probiotic bacteria in vitro. International Research Journal. 2024;(12(150)). (In Russ.) https://doi.org/10.60797/IRJ.2024.150.66 URL: https://research-journal.org/archive/12-150-2024-december/10.60797/IRJ.2024.150.66 (accessed: May 18, 2025)
35. Krishnamurthy H.K., Pereira M., Bosco J. et al. Gut commensals and their metabolites in health and disease. Front. Microbiol. 2023;14:1244293. https://doi.org/10.3389/fmicb.2023.1244293
36. Keimer B., Pieper R., Simon A., Zentek J. Effect of time and dietary supplementa-tion with processed yeasts (Kluyveromyces fragilis) on immunological parame-ters in weaned piglets. Anim Feed Sci Technol. 2018;245:136-146. http://doi.org/10.1016/j.anifeedsci.2018.09.008
37. Markowiak P., Śliżewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018;10:21. https://doi.org/10.1186/s13099-018-0250-0
38. Bermúdez-Humarán L.G., Chassaing B., Langella P. Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microb Cell Fact. 2024;23:172. https://doi.org/10.1186/s12934-024-02449-3
39. Wu Y., Zhen W., Geng Y. et al. Effects of dietary Enterococcus faeci-um NCIMB11181 supplementation on growth performance and cellular and humoral immune responses in broiler chickens. Poult Sci. 2019;98(1):150-163. http://doi.org/10.3382/ps/pey368
40. Wu Z., Yang K., Zhang A. et al. Effects of Lactobacil-lus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poult Sci. 2021;100(9):101323. https://doi.org/10.1016/j.psj.2021.101323
41. Gotkhals L., Gorbakova A. Comparative characteristics of butyrates used in productive livestock and poultry farming. Kombikorma. 2014;(5):43-45. (In Russ.)
42. Drachelovskiy O.V. Application of short-chain and medium-chain acids in pig breeding. Chetveriy Vsebelorusskiy Forum Zhivodnovodov. Minsk, Belarus: Izdatelskiy dom Grevtsova, 2017:137-144. (In Russ.)
43. Lenkova T.N., Troshkin A.N., Drachelovskiy O.V. Use of sodium butyrate is effective. Ptitsevodstvo. 2014;(12):21-26. (In Russ.)
44. Sizikova T., Gorbakova A. Source of butyric acid in the intensification of poultry farming. Kombikorma. 2014;(7):67-68. (In Russ.)
45. Hill C., Guarner F., Reid G., Gibson G.R. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-514. https://doi.org/10.1038/nrgastro.2014.66
46. Yirga H. The use of probiotics in animal nutrition. J Prob Health. 2015;3:132. https://doi.org/10.4172/2329-8901.1000132
47. Daudelin J.F., Lessard M., Beaudoin F. et al. Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs. Vet Res 2011;42:69. https://doi.org/10.1186/1297-9716-42-69
48. Zhang Y., Zhang Y., Liu F. et al. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porc Health Manag. 2023;9:5. https://doi.org/10.1186/s40813-022-00295-6
49. Liao S.F., Nyachoti M. Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr. 2017;3(4):331-343. https://doi.org/10.1016/j.aninu.2017.06.007
50. Raheem A., Liang L., Zhang G., Cui S. Modulatory Effects of Probiotics During Pathogenic Infections with Emphasis on Immune Regulation. Front. Immunol. 2021;12:616713. https://doi.org/10.3389/fimmu.2021.616713
51. Wu T., Wang G., Xiong Z. et al. Probiotics Interact With Lipids Metabolism and Affect Gut Health. Front. Nutr. 2022;9:917043. https://doi.org/10.3389/fnut.2022.917043
52. Varankovich N.V., Nickerson M.T., Korber D.R. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front. Microbiol. 2015;6:685. https://doi.org/10.3389/fmicb.2015.00685
53. Reiners J., Lagedroste M., Ehlen K., Leusch S. et al. The N-terminal Region of Nisin Is Important for the BceAB-Type ABC Transporter NsrFP from Streptococcus agalactiae COH1. Front. Microbiol. 2017;8:1643. https://doi.org/10.3389/fmicb.2017.01643
54. Szydłowska A., Sionek B. Probiotics and Postbiotics as the Functional Food Components Affecting the Immune Response. Microorganisms. 2023;11:104. https://doi.org/10.3390/microorganisms11010104
55. Hevia A., Delgado S., Sánchez B., Margolles A. Molecular Players Involved in the Interaction Between Beneficial Bacteria and the Immune System. Front. Microbiol. 2015;6:1285. https://doi.org/10.3389/fmicb.2015.01285
56. Motran C.C., Silvane L., Chiapello L.S. et al. Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells. Front. Immunol. 2018;9:664. https://doi.org/10.3389/fimmu.2018.00664
57. Vieco-Saiz N., Belguesmia Y., Raspoet R., Auclair E. et al. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front. Microbiol. 2019;10:57. https://doi.org/10.3389/fmicb.2019.00057
58. Rastogi S., Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front. Pharmacol. 2022;13:1042189. https://doi.org/10.3389/fphar.2022.1042189
59. Soares A., Beraldi E.J., Ferreira P.E.B., Bazotte R.B. et al. Intestinal and neuronal myenteric adaptations in the small intestine induced by a high-fat diet in mice. BMC Gastroenterol. 2015;15:3. https://doi.org/10.1186/s12876-015-0228-z
60. Mohamed T.M., Sun W., Bumbie G.Z., Elokil A.A. et al. Feeding Bacillus subtilis ATCC19659 to broiler chickens enhances growth performance and immune function by modulating intestinal morphology and cecum microbiota. Front Microbiol. 2022;12:798350. https://doi.org/10.3389/fmicb.2021.798350
61. Kaminsky L.W., Al-Sadi R., Ma T.Y. IL-1β and the intestinal epithelial tight junction barrier. Front. Immunol. 2021;12:767456. https://doi.org/10.3389/fimmu.2021.767456
62. Kim K., Song M., Liu Y., Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front. Immunol. 2022;13:885253. https://doi.org/10.3389/fimmu.2022.885253
63. Mazur-Kuśnirek M., Lipiński K., Antoszkiewicz Z., Matusevičius P. Different forms of butyric acid in poultry nutrition – a review. Journal of Animal and Feed Sciences. 2024;33(3):270-280. https://doi.org/10.22358/jafs/186022/2024
Review
For citations:
Buryakov N.P., Menberg V.V. Solutions for intestinal health: a new direction in feeding monogastric animals (review). IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2025;(3):115-138. (In Russ.)