Soybean white mold: pathogenesis features, biological properties of the pathogen, and control methods
https://doi.org/10.26897/0021-342X-2025-6-127-148
Abstract
Sclerotinia sclerotiorum is a dangerous, highly specialized necrotrophic phytopathogen that infects approximately 400 plant species, including economically important crops such as sunflower, rape-seed, soybean, and others. This fungus causes white mold (syn. sclerotiniosis), one of the most destructive diseases, especially in regions with cool and humid climates. The pathogen S. sclerotiorum has a simple life cycle, where infection occurs either via mycelium from dormant sclerotia in the soil or by ascospores from apothecia. The pathogen can penetrate through the stem base or aerially through flowers and dead plant tissues. Soybean cultivation in Russia is continuously expanding, and therefore the pathogen poses a particular problem, leading to significant yield losses. This review summarizes current data on the biology of S. sclerotiorum, its mechanisms of pathogenicity and interaction with the host plant, dissemination pathways, and impact assessment. It also covers methods for monitoring and diagnosing soybean white mold, existing control methods (agronomic, biological, and chemical), as well as achievements and challenges in soybean breeding for white mold resistance. In conclusion, promising research directions are discussed, aimed at developing more effective and environmentally safe methods for protecting soybeans from S. sclerotiorum.
About the Authors
R. I. TarakanovRussian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation
Rashit I. Tarakanov, CSc (Bio), Associate Professor
Department of Plant Protection
127550; 49 Timiryazevskaya st.; Moscow
V. V. Medvedeva
Russian Federation
Victoria V. Medvedeva, student
Department of Plant Protection
127550; 49 Timiryazevskaya st.; Moscow
P. V. Evseev
Russian Federation
Peter V. Evseev, CSc (Bio), Head of the Laboratory
Laboratory of Molecular Microbiology
117513; 1 Ostrovityanova St.; Moscow
O. A. Savoskina
Russian Federation
Olga A. Savoskina, DSc (Ag), Professor
Department of Agriculture and Experimental Methods
127550; 49 Timiryazevskaya st.; Moscow
S. I. Chebanenko
Russian Federation
Svetlana I. Chebanenko, CSc (Ag), Associate Professor
Department of Plant Protection
127550; 49 Timiryazevskaya st.; Moscow
F. S.-U. Dzhalilov
Russian Federation
Fevzi S.-U. Dzhalilov, DSc (Bio), Professor
Department of Plant Protection
127550; 49 Timiryazevskaya st.; Moscow
References
1. Blinova S.A., Konysheva M.L., Shvartsev A.A., Solov’ev A.A. et al. Optimisation of molecular-genetic methods for diagnosing fungi of Genus Sclerotinia. Izvestiya of Timiryazev Agricultural Academy. 2022;1(6):31-42. (In Russ.) doi: 10.26897/0021-342X-2022-6-31-42
2. Maslienko L.V., Kurilova D.A., Shipovskaya E.Yu. The screening of antagonist strains of rapeseed white rot agent. Oil Crops. 2012;(2):183-191. (In Russ.)
3. Albert D., Dumonceaux T., Carisse O., Beaulieu C. et al. Combining desirable traits for a good biocontrol strategy against Sclerotinia sclerotiorum. Microorganisms. 2022;10(6):1189. doi: 10.3390/microorganisms10061189
4. Alkooranee J.T., Aledan T.R., Ali A.K., Lu G. et al. Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. PLoS One. 2017;12(1): e0168850. doi: 10.1371/journal.pone.0168850
5. Andrade C.M., Tinoco M.L.P., Rieth A.F., Maia F.C.O. et al. Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathology. 2016;65(4):626-632. doi: 10.1111/ppa.12447
6. Bardin S.D., Huang H.C. Research on biology and control of Sclerotinia diseases in Canada. Canadian Journal of Plant Pathology. 2001;23:88-98. doi: 10.1080/07060660109506914
7. Bolton M.D., Thomma B.P.H.J., Nelson B.D. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a broad host range pathogen. Molecular Plant Pathology. 2006;7(1):1-16. doi: 10.1111/j.1364-3703.2005.00316.x
8. Cheng Y., Lou H., He H., He X. et al. Genomic and biological control of Sclerotinia sclerotiorum using an antagonistic strain Bacillus velezensis 20507. Frontiers in Microbiology. 2024;15:1385067. doi: 10.3389/fmicb.2024.1385067
9. Derbyshire M.C., Denton-Giles M. The control of Sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathology. 2016;65(6):859-877. doi: 10.1111/ppa.12517
10. Duarte P.A., Menze L., Shoute L., Zeng J. et al. Highly efficient capture and quantification of airborne S. sclerotiorum spores using a nanoelectrode-activated microwell array. ACS Omega. 2022;7(1):459-468. doi: 10.1021/acsomega.1c04878
11. Elsheshtawi M., Elkhaky M.T., Sayed S.R. Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using Contans® and reduced fungicide application. Saudi Journal of Biological Sciences. 2017;24(2):405-409. doi: 10.1016/j.sjbs.2016.01.038
12. Fan J., Li J., Ren S. et al. Natural variation in BnaA07.MKK9 confers resistance to Sclerotinia stem rot in oilseed rape. Nature Communications. 2024;15:5059. doi: 10.1038/s41467-024-49504-6
13. Geng R., Shan Y., Li L., Shi C.-L. et al. CRISPR/Cas9-editing of BnaIDA genes prevents silique shattering, floral organ abscission and Sclerotinia spread in rapeseed. Plant Communications. 2022;3(6):100452. doi: 10.1016/j.xplc.2022.100452
14. Gustavo C.B., André B.P., David S.J., Felipe F.S. et al. Incidence and severity of white mold for soybean under different cultural practices and local meteorological conditions. Plant Disease. 2015;31(4):1004-1014. doi: 10.14393/BJ-v31n4a2015-26125
15. Hossain M.M., Sultana F., Rubayet M.T. et al. White mold: a global threat to crops and key strategies for its sustainable management. Microorganisms. 2024;13(1):4. doi: 10.3390/microorganisms13010004
16. Kabbage M., Yarden O., Dickman M.B. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant Pathology. 2015;64(5):1004-1016. doi: 10.1111/ppa.12344
17. Kandel R., Chen C.Y., Grau C.R. et al. Soybean resistance to white mold: evaluation of soybean germplasm under different conditions and validation of QTL. Frontiers in Plant Science. 2018;9:505. doi: 10.3389/fpls.2018.00505
18. Kandel Y.R, Hunt C, Ames K. et al. Meta-analysis of yield response of soybean to foliar fungicides in the United States and Canada. Plant Disease. 2021;105(5):1382-1389. doi: 10.1094/PDIS-07-20-1578-RE
19. Khan H.A., Mukhtar M., Bhatti M.F. Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review. Brazilian Journal of Microbiology. 2023;54(4):2071-2091. doi: 10.1007/s42770-023-01073-9
20. Lehner M.S., de Paula Junior T.J., Del Ponte E.M., Mizubuti E.S.G. et al. Independently founded populations of Sclerotinia sclerotiorum from a tropical and a temperate region have similar genetic structure. PLoS One. 2017;12(4): e0173915. doi: 10.1371/journal.pone.0173915
21. Liu S., Fu L., Chen J. et al. Baseline sensitivity of Sclerotinia sclerotiorum to metconazole and the analysis of cross-resistance with carbendazim, dimethachlone, boscalid, fluazinam, and fludioxonil. Phytoparasitica. 2021;49:123-130. doi: 10.1007/s12600-020-00867-8
22. Ma W., Ding J., Jia Q., Li Q. et al. A novel strain of Bacillus cereus with a strong antagonistic effect specific to Sclerotinia and its genomic and transcriptomic analysis. Microorganisms. 2024;12(3):611. doi: 10.3390/microorganisms12030611
23. Massawe V.C., Hanif A., Farzand A., Mburu D.K. et al. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology. 2018;108(12):1373-1385. doi: 10.1094/PHYTO-04-18-0118-R
24. Maui A., Sauranbaev B.N., Orazbayev K.I. Soybean pathogens in the southeast of Kazakhstan. Journal of social, humanities and administrative sciences. 2017;3(5):20-26.
25. McCaghey B., Shao X., Kurzejeski E., Lindstrom T. et al. Host-induced gene silencing of a Sclerotinia sclerotiorum oxaloacetate acetylhydrolase using Bean pod mottle virus reduces white mold severity on soybean. Frontiers in Plant Science. 2021;12:677631. doi: 10.3389/fpls.2021.677631
26. Mueller D.S., Chilvers M.I., Malvick D.K., Mueller J.G. et al. Fungicide sensitivity of Sclerotinia sclerotiorum isolates from soybean in the United States. Plant Disease. 2023;107(4):1231-1238. doi: 10.1094/PDIS-07-22-1707-RE
27. Newman T.E., Derbyshire M.C., Solis-Moya E. et al. The broad host range pathogen Sclerotinia sclerotiorum produces multiple effector proteins that induce host cell death intracellularly. Molecular Plant Pathology. 2023;24(7):866-881. doi: 10.1111/mpp.13291
28. O’Sullivan C.A., Belt K., Thatcher L.F. Tackling control of a cosmopolitan phytopathogen: Sclerotinia. Frontiers in Plant Science. 2021;12:707509. doi: 10.3389/fpls.2021.707509
29. Reich J., Lamppa R.S., Venette J., Chilvers M.I. et al. Predicting airborne ascospores of Sclerotinia sclerotiorum through machine learning and statistical methods. Plant Pathology. 2024;73(6):1-16. doi: 10.1111/ppa.13902
30. Saharan G.S., Mehta N. Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management. Berlin, Germany: Springer, 2008:531.
31. Schmidt C.S., Mrnka L., Lovecká P., Frantík T. et al. Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease. Scientific Reports. 2021;11:3657. doi: 10.1038/s41598-021-81937-7
32. Shoute L.C.T., Anwar A., MacKay S. et al. Immuno-impedimetric Biosensor for Onsite Monitoring of Ascospores and Forecasting of Sclerotinia Stem Rot of Canola. Scientific Reports. 2018;8:12396. doi: 10.1038/s41598-018-30167-5
33. Silva R.A., Lehner M.S., Paula Júnior T.J. et al. Fungicide sensitivity of isolates of Sclerotinia sclerotiorum from different hosts and regions in Brazil and phenotypic instability of thiophanate-methyl resistant isolates. Tropical plant pathology. 2024;49:93-103. doi: 10.1007/s40858-023-00629-x
34. Smolinska U., Kowalska B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum – a review. Journal of Plant Pathology. 2018;100(1):1-12. doi: 10.1007/s42161-018-0023-0
35. Verma R., Kaur J. Expression of barley oxalate oxidase confers resistance against Sclerotinia sclerotiorum in transgenic Brassica juncea. Transgenic Research. 2021;30(2):143-154. doi: 10.1007/s11248-021-00234-1
36. Vitorino L.C., Silva F.O.D., Cruvinel B.G., Bessa L.A. et al. Biocontrol Potential of Sclerotinia sclerotiorum and Physiological Changes in Soybean in Response to Butia archeri Palm Rhizobacteria. Plants. 2020;9(1):64. doi: 10.3390/plants9010064
37. Williams B., Kabbage M., Kim H.J., Britt R. et al. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathogens. 2011;7(6): e1002107. doi: 10.1371/journal.ppat.1002107
38. Wytinck N., Ziegler D.J., Walker P.L., Sullivan D.S. et al. Host-induced gene silencing of the Sclerotinia sclerotiorum AbHydrolase-3 gene reduces disease in transgenic canola (Brassica napus). PLoS ONE. 2022;17(8): e0261102. doi: 10.1371/journal.pone.0261102
39. Xu L., Li G., Jiang D., Chen W. Sclerotinia sclerotiorum: an evaluation of virulence theories. Annual Review of Phytopathology. 2018;56:311-338. doi: 10.1146/annurev-phyto-080417-050052
40. Ziesman B.R., Turkington T.K., Basu U., Strelkov S.E. A Quantitative PCR System for Measuring Sclerotinia sclerotiorum in Canola (Brassica napus). Plant Disease. 2016;100(5):984-990. doi: 10.1094/PDIS-05-15-0605-RE
Review
For citations:
Tarakanov R.I., Medvedeva V.V., Evseev P.V., Savoskina O.A., Chebanenko S.I., Dzhalilov F.S. Soybean white mold: pathogenesis features, biological properties of the pathogen, and control methods. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2025;(6):127-148. (In Russ.) https://doi.org/10.26897/0021-342X-2025-6-127-148
JATS XML













