Assessment of nitrite and transferrin levels in the blood of cows with subclinical mastitis by the electron paramagnetic resonance method
https://doi.org/10.26897/0021-342X-2025-2-136-150
Abstract
A major problem in veterinary medicine is the lack of timely and quantitative diagnosis of subclinical mastitis in highly productive cows. Currently, the main indicator for diagnosis of udder pathology is milk analysis for leukocytes (i.e., neutrophils, macrophages, lymphocytes) and epithelial cells. Inflammation in the mammary gland is directly related to nitric oxide synthesis and the paramagnetic NO complex with hemoglobin has characteristic spectroscopic parameters of hyperfine cleavage. The level of (NO)x in the milk of cows with subclinical mastitis differed significantly from that of healthy cows. The electron paramagnetic resonance method was used to study the level of nitric oxide NO by the stable oxidation product nitrite and transferrin in the blood of cows with subclinical mastitis. From the EPR signal of transferrin with g = 4.3, it was found that the blood of the control group contains more transferrin, and consequently iron, and the blood of the control group contains significantly less. Therefore, changes in nitrite and transferrin concentrations, along with blood Fe and ferritin, may serve as biomarkers of inflammatory diseases, including in cows with subclinical mastitis.
Keywords
About the Authors
S. V. FedotovRussian Federation
Sergey V. Fedotov, DSc (Vet), Head of the Department of Veterinary Medicine
49 Timiryazevskaya St., Moscow, 127550
V. A. Serezhenkov
Russian Federation
Vladimir A. Serezhenkov, CSc (Bio), Senior Research Associate at the Laboratory of Physical Chemistry of Biopolymers
4 Kosygina St., Moscow, 119334
N. Yu. Sidnev
Russian Federation
Nikita Yu. Sidnev, Assistant at the Department ofVeterinary Medicine
49 Timiryazevskaya St., Moscow, 127550
N. A. Tkachev
Russian Federation
Nikolay A. Tkachev, CSc (Bio), Research Associate at the Laboratory of Physical Chemistry of Biopolymers
4 Kosygina St., Moscow, 119334
N. S. Belozertseva
Russian Federation
Natalya S. Belozertseva, CSc (Bio), Associate Professor at the Department of Veterinary Medicine
49 Timiryazevskaya St., Moscow, 127550
References
1. Trukhachev V.I., Oleinik S.A., Zlydnev N.Z., Morozov V.Yu. Adaptation of the Recommendations of the International Committee for Animal Recording (Icar) in Evaluating the Quality of Milk. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6(6):1317-1320.
2. Avdeyenko V.S., Fedotov S.V., Belozertseva N.S., Filatova A.V. et al. Forecasting reproductive qualities and predisposition to mastitis in cows of the Holstein and Semental breed. Izvestiya of the Timiryazev Agricultural Academy. 2020;3:107-121. (In Russ.) https://doi.org/10.26897/0021-342X-2020-3-107-120
3. Filatova A.V., Tshivale B.M., Fedotov S.V., Avdeenko V.S. et al. Infectious factor in the etiology of mastitis in highly productive lactating cows. Uchenye zapiski uchrezhdeniya obrazovaniya Vitebskoy ordena Znak pocheta gosudarstvennoy veterinarnoy akademii. 2022;58:86-89. (In Russ.) https://doi.org/10.52368/2078-0109-2022-58-4-86-91
4. Fedotov S.V., Simonov P.G., Aliev A.Yu. Features of therapy of purulent-catarrhal endometritis and mastitis in cows. Veterinaria Kubani. 2023;2:15-18. (In Russ.) https://doi.org/10.33861/2071-8020-2023-2-15-18
5. Ashraf A., Imran M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev. 2020;21:36-49. https://doi.org/10.1017/S1466252319000094
6. Cheng W.N., Han S.G. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments. Asian-Australas J. Anim. Sci. 2020;33(11):1699-1713. https://doi.org/10.5713/ajas.20.0156
7. Chow J.C., Young D.W., Golenbock D.T., Christ W.J. et al. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 1999;274:10689-10692. http://doi.org/10.1074/jbc.274.16.10689
8. Fedotov S.V., Sidnev N.Yu., Reddy G.R., Fouad S. et al. Modern methods for diagnosing mastitis in cows under conditions of intensive production. Veterinary Medicine. 2022;4:51-56. (In Russ.) https://doi.org/10.30896/0042-4846.2022.25.4.51-56
9. Aliev A.Yu., Fedotov S.V., Belozertseva N.S. Changes in the protein composition of cows’ milk with subclinical mastitis. Russian Journal Problems of Veterinary Sanitation, Hygiene and Ecology. 2022;4:471-477. (In Russ.) https://doi.org/10.36871/vet.san.hyg.ecol.202204010
10. Dang X.T.T., Kavishka J.M., Zhang D.X., Pirisinu M. et al. Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells. 2020;9(10):2191. https://doi.org/10.3390/cells9102191
11. Zempleni J., Aguilar-Lozano A., Sadri M., Sukreet S. et al. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J. Nutr. 2017;147(1):3-10. https://doi.org/10.3945/jn.116.238949
12. Do D.N., Dudemaine P.L., Mathur M., Suravajhala P. et al. miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. Int. J. Mol. Sci. 2021;22(6):3080. https://doi.org/10.3390/ijms22063080
13. Chen Y., Jing H, Chen M., Liang W. et al. Transcriptional Profiling of Exosomes Derived from Staphylococcus aureus-infected Bovine Mammary Epithelial Cell Line MAC-T by RNA-seq Analysis. Oxid. Med. Cell Longev. 2021;2021:8460355. https://doi.org/10.1155/2021/8460355
14. Green L.C., Wagner D.A., Glogowski J., Skipper P.L. et al. Analysis of nitrate, nitrite and (15N) nitrate in biological fluids. Anal. Biochem. 1982;126(1):131-138. https://doi.org/10.1016/0003-2697(82)90118-X
15. Tsikas D.A Critical review and discussion of analytical methods in the L-arginine/nitric oxide area of basic and clinical research. Anal. Biochem. 2008;379:139-163. https://doi.org/10.1016/j.ab.2008.04.018
16. Li D., Liu Y., Li Y. et al. Significance of nitric oxide concentration in plasma and uterine secretes with puerperal endometritis in dairy cows. Vet Res Commun. 2010;34:315-321. https://doi.org/10.1007/s11259-010-9355-8
17. Prusakov V.E., Maksimov Y.V., Burbaev D.Sh., Serezhenkov V.A. et al. EPR and Mössbauer Characteristics of Aqueous Solutions of 57Fe-dinitrosyl Iron Complexes with Glutathione and Hydroxyl Ligands. Appl. Magn. Reson. 2019;50(7):861-888. https://doi.org/10.1007/s00723-019-1112-8
18. Malmström R.E., Björne H., Oldner A., Wanecek M. et al. Intestinal Nitric Oxide in the Normal and Endotoxemic Pig. Shock. 2002;18:456-460. https://doi.org/10.1097/00024382-200211000-00012
19. Liu R., Kang Y., Chen L. Activation mechanism of human soluble guanylatecyclase by stimulators and activators. Nature Communications. 2021;12:5492. https://doi.org/10.1038/s41467-021-25617-0
20. Vanin A.F., Sanina N.A., Serezhenkov V.A., Burbaev D.Sh. et al. Dinitrosyl-iron complexes with thiol-containing ligands: spatial and electronic structures. Biol. Chem. 2007;19(16):82-93. https://doi.org/10.1016/J.NIOX.2006.07.005
21. Vanin A.F., Selitskaya R.P., Serezhenkov V.A., Mozhokina G.N. Direct EPR Detection of Nitric Oxide in Mice Infected with the Pathogenic Mycobacterium Mycobacterium tuberculosis. Appl Magn Reson. 2010;38(1):95-104. https://doi.org/10.1007/s00723-009-0038-y
22. Serezhenkov V.A., Tkachev N.A., Artyushinab Z.S., Kuznetsova M.I. et al. ReducedNitricOxideBioavailabilityinHorseswithColic: EvaluationbyESRSpectroscopy. Biophysics. 2020;65(5):869-875. https://doi.org/10.1134/S0006350920050176
23. Bülbül A., Yılmaz B. Relationship between the Level of Nitric Oxide and Somatic Cell Count in the Cow Milk with Mastitis. Eurasian Journal of Veterinary Sciences. 2004;20(2):95-102.
24. Gera S., Guha A. Assessment of acute phase proteins and nitric oxide as indicator of subclinical mastitis in Holstein × Haryana cattle. Indian Journal of Animal Sciences. 2011;81(10):1029-1031.
25. Murata H., Shimada N., Yoshioka M. Current research on acute phase proteins in veterinary diagnosis: an overview. The Veterinary Journal. 2004;168:28-40. https://doi.org/10.1016/S1090-0233(03)00119-9
26. Santana A.M., Silva D.G., Thomas F.C., Bernardes P.A. et al. Blood serum acute phase proteins and iron dynamics during acute phase response of Salmonella enterica Serotype Dublin experimentally infected buffalo calves. Vet. Immunol. Immunopathol. 2018;203:30-39. https://doi.org/10.1016/j.vetimm.2018.07.014
27. McNair J., Elliott C., Bryson D.G., Mackie D.P. Bovine serum transferrin concentration during acute infection with Haemophilus somnus. Vet. J. 1998;155:251-255. https://doi.org/10.1016/S1090-0233(05)80020-6
28. Oria R., Sánchez L., Houston T., Hentze M.W. et al. Effect of nitric oxide on expression of transferrin receptor and ferritin and on cellular iron metabolism in K562 human erythroleukemia cells. Blood. 1995;85(10):2962-2966. https://doi.org/10.1182/blood.V85.10.2962.bloodjournal85102962
29. Ong S.T., Ho J.Z., Ho B., Ding J.L. Iron-withholding strategy in innate immunity. Immunobiology. 2006;211:295-314. https://doi.org/10.1016/j.imbio.2006.02.004
30. Ali A., Rehman M.U., Mushtaq S., Ahmad Sh.B. et al. Biochemical and Computational Assessment of Acute Phase Proteins in Dairy Cows Affected with Subclinical Mastitis. Curr. Issues. Mol. Biol. 2023;45:5317-5346. https://doi.org/10.5713/ajas.2012.12261
31. Li J., LoBue A., Heuser S.K., Cortese-Krott M.M. Determination of Nitric Oxide and Its Metabolites in Biological Tissues Using Ozone-Based Chemiluminescence Detection: A State-of-the-Art Review. Antioxidants. 2024;13(2):179. https://doi.org/10.3390/antiox13020179.
Review
For citations:
Fedotov S.V., Serezhenkov V.A., Sidnev N.Yu., Tkachev N.A., Belozertseva N.S. Assessment of nitrite and transferrin levels in the blood of cows with subclinical mastitis by the electron paramagnetic resonance method. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2025;1(2):136-150. (In Russ.) https://doi.org/10.26897/0021-342X-2025-2-136-150