Preview

Известия Тимирязевской сельскохозяйственной академии

Расширенный поиск

Регуляция роста и пространственной ориентации боковых корней Arabidopsis thaliana L

https://doi.org/10.34677/0021-342X-2019-3-80-94

Аннотация

Боковые корни играют существенную роль в формировании разветвленной корневой сети, а значит определяют потенциал растения в поиске и потреблении ресурсов, механическом креплении в почве. В отличие от инициации, развитие боковых корней после их выхода из главного корня стало объектом рассмотрения ученых сравнительно недавно. На основании длины, угла по отношению к вектору гравитации и количества клеток в колумелле выделяют 6 стадий развития бокового корня. Как и в случае с главным корнем, ведущую роль в гомеостазе боковых корней несут растительные гормоны - ауксин и цитокинин. Но на отдельных стадиях развития отклики боковых корней на действие ауксина, цитокинина и абсцизовой кислоты значительно отличаются от известных процессов в главном корне, и оказывают существенное влияние на архитектуру корневой системы. Различия в организации эндогенной регуляции главного и боковых корней наглядно проявляются в их индивидуальной реакции на доступность отдельных элементов минерального питания и засоление. В данном обзоре собраны актуальные данные касательно скорости роста, ориентации и внутренних механизмов регуляции роста и развития боковых корней модельного растения Arabidopsis thaliana.

Об авторах

А. С. Кривобок
Государственный научный центр Российской Федерации -Институт медико-биологических проблем РАН
Россия


Т. Н. Бибикова
Московский государственный университет им. М.В. Ломоносова
Россия


Список литературы

1. Bai H., Muralli B., Barbaer K., Wolvertone C. Low phosphate alters lateral root setpoint angle and gravitropism. American Journal of Botany, 2013. 100(1): 000-000. 2013;

2. De Smet I., Signora L., Beeckman T., Inze D., Foyer C.H., and Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J., 2003. 33: 543-555;

3. Debi R.B, Taketa S., Ichii M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol., 2005 507-15;

4. Ding Z. and De Smet I. Localised ABA signalling mediates root growth plasticity. Trends Plant Sci., 2013. 18, 533-535;

5. Duan L. Dietrich D., NgCh.H., Chan P.M.Y., Bhalerao R., Bennet M.J. Dinneny J.R. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings, 2013. Plant Cell 25, 324-41

6. Dubrovsky J.G., Forde B.G. Quantitative Analysis of Lateral Root Development: Pitfalls and How to Avoid Them. The Plant Cell, 2012. Vol. 24:4-14. www.plantcell.org/ cgi/doi/10.110 5/tpc.11.0 89698;

7. Giehl R.F.H., Lima J.E., Wiren N. Localized Iron Supply Triggers Lateral Root Elongation in Arabidopsis by Altering the AUX1-Mediated Auxin Distribution, 2012. The Plant Cell, Vol. 24: 33-49;

8. Guseman J.M.; Webb K.; Srinivasan C.; Dardick C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J. 2017, 89(6):1093-1105;

9. Guyomarc’h S., Leran S., Auzon-Cape M., Perrine-Walker F., Lucas M., Laplaze L. Early development and gravitropic response of lateral roots in Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci., 2012 Jun 5;367(1595): 1509-16. doi: 10.1098/ rstb.2011.0231;

10. He, Y., Hao Q., Li W., Yan C., Yan N., Yin P Identification and characterization of ABA receptors in Oryza sativa. PLoS One, 2014 Apr 17;9(4): e95246. doi: 10.1371/ journal.pone.0095246. ECollection 20;

11. Heathcote D.G., Chapman D.K., Brown A.H. Nastic curvatures of wheat coleoptiles that develop in true microgravity. Plant Cell Environ., 1995. 18, 818-822;

12. Johnson S.P., and Tibbitts T.W. The liminal angle of a plagiotropic organ under weightlessness. Bioscience, 1968. 18, 655-661;

13. Jung C. Seo J.S., Han S.W., Koo Y.J., Kim C.H., Song S.I., Nahm B.H., Choi Y.D, Cheong J.J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol., 2008. 146, 623-35;

14. Kiss J.Z., Miller K.M., Ogden L.A., and Roth K.K. Phototropism and gravitropism in lateral roots of Arabidopsis. Plant Cell Physiol, 2002. 43, 35-43;

15. Krouk G. et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell., 2010. 18, 927-937;

16. Lavenus J., Guyomarc’h S., Laplaze L. PIN Transcriptional Regulation Shapes Root System Architecture. Trends Plant Sci. 2016 Mar;21(3):175-177. doi: 10.1016/j. tplants.2016.01.011.

17. Li, M. et al. Double knockouts of phospholipases Dzeta1 and Dzeta2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol., 2006. 140, 761-770;

18. Linkohr B.I., Williamson L.C., Fitter A.H., Leyser H.M. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J., 2002. 29, 751-760;

19. Little D.Y., Rao H., Oliva S., Daniel-Vedele F., Krapp A., Malamy J.E. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc. Natl. Acad. Sci. USA, 2005. 102: 13693-13698;

20. Lopez-Bucio J., Cruz-Ramirez A. & Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr. Op. Plant Biol., 2003. 6, 280-287;

21. Malamy J.E., Benfey P.N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development, 1997. 124(1):33-44;

22. Mullen J.L., Wolverton C., Hangarter R.P. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis, 2005. Adv Space Res, V 36 1211-1217;

23. Mullen J.L., Hangarter R.P. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis, 2003. Adv Space Res. 2003;31(10):2229-36;

24. Nacry Ph., Canivenc G., Muller B., Azmi A., Onckelen H., RossignolM., Doumas P. A Role for Auxin Redistribution in the Responses of the Root System Architecture to Phosphate Starvation in Arabidopsis, 2005. Plant Physiology, 2005, Vol. 138, pp.2061-2074;

25. Okushima Y., Inamoto H., Umeda M. A high concentration of nitrate causes temporal inhibition of lateral root growth by suppressing cell proliferation. Plant Biotechnol., 2011. 28: 413-416;

26. Peret B., De Rybel B., Casimiro I., Benkova E., Swarup R., Laplaze L., Beeckman T., BennettM.J. Arabidopsis lateral root development: an emerging story. Trends Plant Sci., 2009. 14, 399-408;

27. Perez-Torres C., Lopez-Bucio J., Cruz-Ramirez A., Ibarra-Laclette E., Dharmasiri S., Estelle M., Herrera-Estrella L. Phosphate availability alters lateral root development in Arabdiopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell., 2008 Dec;20(12):3258-72. doi: 10.1105/ tpc.108.058719;

28. Pernisova M., Prat T., Grones P Harustiakova D., Matonohova M, Spichal L., Nodzynski T., Friml J., Hejatko. J. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. New Phytologist, 2016. doi: 10.1111/nph.14049;

29. Ransom J., Moore R. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). I. Structure of columella cells. Am.J. Bot., 1983. 70, 1048-1056;

30. Rosquete M.R., Kleine-Vehn J. PIN7 auxin carrier is a terminator of radial root expansion in Arabidopsis thaliana. Int J Mol Sci. 2018 Apr 19;19(4). pii: E1238. doi: 10.3390/ijms19041238. doi: https://doi.org/10.1101/253807;

31. Rosquete M.R., Wangenheim D.,Marhavy P,Barbez E,Stelzer EHK,Benkova E, etal. An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr Biol. 2013 May 6;23(9):817-22. doi: 10.1016/j.cub.2013.03.064;

32. Roycewicz P & Malamy J.E. Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays. Phil. Trans. R. Soc. Lond. B Biol. Sci., 2012. 367(1595), 1489-1500;

33. Roychoudhry S, Del Bianco M, Kieffer M, Kepinski S Auxin controls gravitropic setpoint angle in higher plant lateral branches Curr Biol. 2013 Aug 5;23(15):1497-504. doi: 10.1016/j.cub.2013.06.034;

34. Roychoudhry S, Kieffer M., Del Bianco M., Liao C., Weijers D., Kepinski S. The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean. Sci Rep. 2017 Mar 3;7:42664. doi: 10.1038/srep42664;

35. Roychoudhry S., Kepinski S. Shoot and Root Branch Growth Angle Control-The Wonderfulness of Lateralness. Current Opinion in Plant Biology. 2015 Feb;23:124-31. doi: 10.1016/j.pbi.2014.12.004;

36. SackF.D., Kiss J.Z. Rootcap structure in wild type and in a starchless mutant of Arabidopsis. Am J Bot. 1989;76(3):454-64;

37. Salisbury S.B., Wheeler R.M. Interpreting plant responses to clinostating: I. MECHANICAL STRESSES AND ETHYLENE. Plant Physiol., 1981. 67, 677-685;

38. Sato E.M., Hijazi H., Bennett M., Vissenberg K., Swarup R. New insights into root gravitropic signalling. Journal of Experimental Botany, 2015. Vol. 66, No. 8 pp. 2155-2165, doi:10.1093/jxb/eru515;

39. Signora L., De Smet I., Foyer C.H., and Zhang H. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J., 2001. 28: 655-662;

40. Simaskova M., O’Brien J.A., Khan M, Van Noorden G., Otvos K., Vieten A., De Clercq I., Van Haperen J.M., Cuesta C., Hoyerova K., Vanneste S., Marhavy P., Wabnik K., Van Breusegem F., Nowack M., Murphy A., Friml J., Weijers D., Beeckman T., Benkova E. Cytokinin response factors regulate PIN-FORMED auxin transporters.2015 Nat. Commun. 6, 8717;

41. Svistoonoff S., Creff A., Reymond M., Sigoillot-Claude C., Ricaud L., Blanchet A., Nussaume L., Desnos T. Root tip contact with low-phosphate media reprograms plant root architecture. Nat. Genet., 2007. 39, 792-796;

42. Tian H., De smet I., Ding Zh. Shaping a root system: regulating lateral versus primary root growth. Trends in Plant Science., 2014. Vol. 19, No. 7;

43. Vidal E.A., Moyano T.C., Riveras E., Contreras-Lopez O., Gutierrez R.A. Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots. Proc. Natl. Acad. Sci. U.S.A., 2013. 110, 12840-12845;

44. Wang L. Hua D., He J., Duan Y., Chen Z., Hong X., Gong Z. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet., 2011. Jul;7(7): e1002172. doi: 10.1371/journal. pgen.1002172. Epub 2011 Jul 14;

45. Wang H.Z.; Yang K.Z.; Zou J.J.; Zhu L.L.; Xie Z.D.; Morita M.T.; Tasaka M.; Friml J.; Grotewold E.; Beeckman T.; Vanneste S.; SackF.; Le, J. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. 2015 Nat. Commun. 6, 88222015 doi: 10.1038/ncomms9822;

46. Williamson L.C., Ribrioux S., Fitter A.H., Ottoline Leyser H.M. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol., 2001. 126, 875-882. DOI: https://doi.org/10.1104/pp.126.2.875;

47. Wu G., Lewis R.D., Spalding E.P. Mutations in Arabidopsis Multidrug Resistance-Like ABC Transporters Separate the Roles of Acropetal and Basipetal Auxin Transport in Lateral Root Development. The Plant Cell, 2007. Vol. 19: 1826-1837;

48. Xing L., Zhao Y., Gao J., Xiang C., Zhu J.K. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Sci Rep. 2016 Jun 3;6:27177. doi: 10.1038/srep27177;

49. Yoshihara T.; Spalding E.P. LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture. Plant Physiol., 2017, 175(2):959-969;

50. Zhang H., Forde B.G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998. 279, 407-409;

51. Zhu J.K., Liu J., and Xiong L. Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell, 1998. 10: 1181-1191.


Рецензия

Для цитирования:


Кривобок А.С., Бибикова Т.Н. Регуляция роста и пространственной ориентации боковых корней Arabidopsis thaliana L. Известия Тимирязевской сельскохозяйственной академии. 2019;(3):80-94. https://doi.org/10.34677/0021-342X-2019-3-80-94

For citation:


Krivobok A.S., Bibikova T.N. Regulating growth and spatial orientation of lateral roots of Arabidopsis thaliana L. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2019;(3):80-94. (In Russ.) https://doi.org/10.34677/0021-342X-2019-3-80-94

Просмотров: 78


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)