Bacterial agents as the basis of biofungicides effective against toxin-producing fungi of the genus Fusarium (review)
https://doi.org/10.26897/0021-342X-2024-5-68-85
Abstract
The review presents information on the biocontrol potential of antagonist bacteria of the genera Bacillus, Pseudomonas and Streptomyces against toxin-producing fungi Fusarium. The harmfulness of Fusarium fungi species complex is that it not only affects grain, reducing the content and quality of protein, its final weight, but also causes contamination with mycotoxins. The ability of fungi of the genus Fusarium to produce mycotoxins is an important factor in the pathogenicity of fungi. Information on the toxicity of deoxynivalenol and zearalenone for humans and animals is presented. Bacteria of the genera Pseudomonas, Bacillus, Streptomyces spp. show antagonistic activity against fungi of the genus Fusarium. In agroecosystems, the most extensive research on bacterial agents for the control of phytopathogenic fungi has focused on antibiosis. The bacteria secrete lipopeptide antibiotics, phenazine derivatives, and other antifungal metabolites to directly inhibit F. graminearum. In addition, beneficial bacteria destroy fungal virulence factors, produce volatile antifungal compounds, and induce systemic plant resistance to phytopathogenic fungi. Biological control mechanisms (antibiosis, competition, hyperparasitism and induced resistance) can act simultaneously, resulting in disease control and therefore reduced mycotoxin contamination. This knowledge facilitates the targeted isolation of bacteria identified as microbiological agents for the biocontrol of phytopathogenic fungi. Understanding the molecular and biochemical basis of biocontrol will facilitate the development of more potent producers of effective biocontrol agents and a better understanding of the mechanisms of biocontrol activity.
About the Authors
T. M. SidorovaTatyana M. Sidorova, CSc (Bio), Senior Research Associate at the Laboratory of Microbiological Plant Protection
post office 39, Krasnodar, 350039
V. V. Allahverdyan
Russian Federation
Valeria V. Allahverdyan, postgraduate student, Junior Research Associate at the Laboratory of Microbiological Plant Protection
post office 39, Krasnodar, 350039
A. M. Asaturova
Angela M. Asaturova, CSc (Bio), Leading Research Associate at the Laboratory of Microbiological Plant Protection
post office 39, Krasnodar, 350039
References
1. Legrand F., Picot A., Cobo-Díaz J.F., Chen W., Le Floch G. Challenges facing the management of Fusarium head blight of cereals caused by F. graminearum. Biological Control. 2017;113:26-38. https://doi.org/10.1016/j.biocontrol.2017.06.011
2. Dweba C.C., Filgan S., Shimelis H.A., Motang T.E. et al. Fusarium head blight of wheat pathogenesis and control strategies. Crop Protection. 2017;91:114-122. https://doi.org/10.1016/j.cropro.2016.10.002
3. Chen C., Turna N.S., Wu F. Risk assessment of dietary deoxynivalenol exposure in wheat products world wide: are new codex DON guidelins adequately protective. Trends in Food Science & Technology. 2019;89:11-25. https://doi.org/10.1016/j.tifs.2019.05.002
4. Rojas E.C., Jørgensen H.J.L., Jensen B., Collinge D.B. Fusarium diseases: biology and management perspectives. In: Oliver R.P. (ed.) Integrated disease management of wheat and barley. Cambridge, Great Britain: Burleigh Dodds Science Publ., 2019. https://doi.org/10.19103/AS.2018.0039.02
5. Ji F., He D., Olaniran A.O., Mokoena M.P., Xu J., Shi J. Occurrence, toxicity, production and detection of Fusarium mycotoxin: a review. Food Prod Process and Nutr. 2019;1(6). https://doi.org/10.1186/s43014-019-0007-2
6. Perochon A., Doohan F.M. Trichothecenes and Fumonisins: key Players in Fusarium – Cereal Ecosystem Interactions. Toxins. 2024;16(2):90-97. https://doi.org/10.3390/toxins16020090
7. Habschied k., krstanović V., Zdunić Z., Babić J. et al. Mycotoxins biocontrol methods for healthier crops and stored products. J. Fungi (Basel). 2021;7(5):339-348. https://doi.org/10.3390/jof7050348
8. Pandit M.A., kumar J., Gulati S., Bhandari N. et al. Major biological control strategies for plant pathogens. Pathogens. 2022;11(2):273. https://doi.org/10.3390/pathogens11020273
9. Pavlyushin V.A., Novikova I.I., Boikova I.V. Microbiological control in phytosanitary optimization technologies for agroecosystems: research and practice (review). Agricultural Biology. 2020;55(3):421-438. (In Russ.) https://doi.org/10.15389/agrobiology.2020.3.421rus
10. Bonaterra A., Badosa E., Daranas N., Francés J. et al. Bacteria as Biological Control Agents of Plant Diseases. Microorganisms. 2022;10(9):1759. https://doi.org/10.3390/microorganisms10091759
11. Chen Y., Wang J., Yang N., Wen Z. et al. Wheat microbiome bacteria can reduce virulence of plant pathogenic fungus by altering histone acetylation. Nat Commun. 2019;9:3429. https://doi.org/10.1038/s41467-018-05683-7
12. Collinge D.B., Jensen D.F., Rabiey M., Sarrocco S. et al. Biological control of plant disease – What has been achieved and what is the direction? Plant Pathology. 2022;71:1024-1047. https://doi.org/10.1111/ppa.13555
13. Pellan L., Dieye C.A.T., Durand N., Foutana A. et al. Biocontrol agents: toolbox for the screening of weapons against mycotoxigenic Fusarium. Fungi. 2021;7(6):446. https://doi.org/10.3390/jof 7060446
14. Gimeno A., kägi A., Drakopoulos D., Bänziger I. et al. From laboratory to the field: Biological control of Fusarium graminearum on infected maize crop residues. Journal of Applied Microbiology. 2020;129(3):680-694. https://doi.org/10.1111/jam.14634
15. Hadj Brahim A., Ben Ali M., Daoud L., Jlidi M. et al. Biopriming of Durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to Fusarium head blight andsalinity. Microorganisms. 2022;10(5). https://doi.org/10.3390/microorganisms10050970
16. Sidorova T.M., Asaturova A.M., Allakhverdyan V.V. Specific features of antagonism of Bacillus bacteria against toxinogenic Fusarium fungi in protecting plants against disease and contamination with mycotoxins (review). South of Russia: Ecology, Development. 2021;16:86-103. https://doi.org/10.18470/1992-1098-2021-4-86-103
17. Harirchi S., Sar T., Ramezani M., Aliyu H. et al. Bacillales: From taxonomy to biotechnological and industrial perspectives. Microorganisms. 2022;10(12):2355. https://doi.org/10.3390/microorganisms10122355
18. Dutilloy E., Oni F.E., Esmaeel Q., Clément C., Barka E.A. Plant beneficial bacteria as bioprotectants against Wheat and Barley diseases. Journal of Fungi. 2022;8(6). https://doi.org/10.3390/jof8060632
19. Dimkić I., Janakiev T., Petrović M., Degrassi G., Fira D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms – a review. Physiological and Molecular Plant Pathology. 2022;117:101754. https://doi.org/10.1016/j.pmpp.2021.101754
20. Fujita S., Yokota k. Disease suppression by the cyclic lipopeptides iturin A and surfactin from Bacillus spp. Against Fusarium wilt of lettuce. J Gen Plant Pathol. 2019;85:44-48. https://doi.org/10.1007/s10327-018-0816-1
21. Allakhverdyan V.V., Sidorova T.M., Asaturova A.M. Promising bacteria strains of the genus Bacillus in plant protection against fusariosis and mycotoxin contamination. South of Russia: Ecology, Development. 2022;17(2(63)):91-101. (In Russ.) https://doi.org/10.18470/1992-1098-2022-2-91-101
22. Palazzini J.M., Dunlep C.A., Bowman M.J., Chuze S.N. Bacillus velezensis RC218 asbiocontrolagenttoreduce Fusarium headblightanddeoxynivalenolaccumulation: genome sequencing and secondary metabolite cluster profiles. Microbiological Research. 2016;192;30-36. https://doi.org/10.1016/j.micres.2016.06.002
23. Palazzini J.M. Bacillus species contributions to the management of mycotoxigenic Fusarium species in cereals. Eur J Plant Pathol. 2023;167:539-550. https://doi.org/10.1007/s10658-023-02736-6
24. Sani A., Qin W. – Q., Li J. –Y., Liu Y. – F. et al. Structural diversityandapplications of lipopeptide biosurfactants as biocontrol agents against phytopatogens: a review. Microbiological Research. 2024;278:127518. https://doi.org/10.1016/j.micres.2023.127518
25. Lee T., Park D., kim k., Lim S.M. et al. Characterzation of Bacillus amyloliquefaciens DA12 showingpotentantifungalactivityagainstmycotoxigenic Fusarium species. Plant Pathology Journal. 2017;33(5);499-507. https://doi.org/10.5423/PPJ
26. Ley-López N., Herdia J.B., Martín-Hernández C.S., Gruz-Lachica I. et al. IdentificationandquantificationoflipopeptidehomologuesinducedandproducedbyBacillus amyloliquefaciens. Fermentation. 2023;9(1). https://doi.org/10.3390/fermentation9110944
27. Li P., Su R., Yin R., Lai D. et al. Detoxification of Mycotoxins through Biotransformation. Toxins. 2020;11. https://doi.org/10.3390/toxins12020121
28. Emam A.M., Dunlap C.A. Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; A potential probiotic to control pathogens in aquaculture. Antonie Van Leeuwenhoek. 2020;113(12);2041-2052. https://doi.org/10.1007/s10482-020-01476-5
29. Reyna M., Pia Macor E., Carolina Vilchez A., Laura Villasuso A. Response in barley roots during interaction with Bacillus subtilis and Fusarium graminearum. Biological Control. 2023;179:105128. https://doi.org/10.1016/j.biocontrol.2022.105128
30. Deepa N., Achar P.N., Sreenivasa M.Y. Current perspective of biocontrol agents for management of Fusarium verticillioides and its fumonisin in cereals – a review. Fungi. 2021;7(9):776-783. https://doi.org/10.3390/jof7090776
31. Mulani R., Mehta k., Saraf M., Goswami D. Decoding the mojo of plant-growth-promoting microbiomes. Physiological and Molecular Plant Pathology. 2021;115:101687. https://doi.org/10.1016/j.pmpp.2021.101687
32. Cantoro R., Palazzini J.M., Yerkovich N., Miralles D.J., Chulze S.N. Bacillus velezensis RC218 as a biocontrol agent against Fusarium graminearum: Effect on penetration, growth and TRI5 expression in wheat spikes. BioControl. 2021;66(2):259-270. https://doi.org/10.1007/s10526-020-10062-7
33. Xu W., Zhang L., Goodwin P.H., Xia M. et al. Isolation, Identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential biocontrol agent against Fusarium graminearum. Frontiers in Microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.598285
34. Oso S., Walters M., Schlechter R.O., Remus-Emsermann M.N.P. Utilisation of hydrocarbons and production of surfactants by bacteria isolated from plant leaf surfaces. FEMS Microbiology Letters. 2019;366(6): fnz061. https://doi.org/10.1093/femsle/fnz061
35. Huang R., Feng Z., Chi X., Sun X. et al. Pyrrolnitrin is more essential than phenazinesfor Pseudomonaschlororaphis G05 in itssuppressionof Fusariumgraminearum. Microbiol. Res. 2018;215:55-64. https://doi.org/10.1016/j.micres.2018.06.008
36. Flury P., Vesga P., Péchy-Tarr M., Aellen N. et al. Antimicrobial and insecticidal: Cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas Strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front. Microbiol. 2017;100. https://doi.org/10.3389/fmicb.2017.00100
37. Simionato A.S., Navarro M.O.P., Jesus M.L.A., Barazetti A.R. et al. The effect of phenazine-1-carboxylic acid on mycelial growth of Botrytis cineria produced by Pseudomonas aeruginosa LV strain. Front. Microbial. 2017;8. https://doi.org/10.3389/fmicb.2017.01102
38. Montes-Osuna N., Gómez-Lama Cabanás C., Valverde-Corredor A. et al. Assessing the Involvement of Selected Phenotypes of Pseudomonas simiae PICF7 in Olive Root Colonization and Biological Control of Verticillium dahlia. Plants. 2021;10(2):412. https://doi.org/10.3390/plants10020412
39. Allakhverdyan V.V., Sidorova T.M., Temerdashev A.Z., Asaturova A.M., Tomashevich N.S. Study of the effect of bacteria of the genus Pseudomonas on the growth and toxin production of the fungus Fusarium graminearum in vitro. South of Russia: Ecology, Development. 2023;18(4):104-113. (In Russ.) https://doi.org/10.18470/1992-1098-2023-4-104-113
40. Guennoc C.M., Rose C., Labbé J., Deveau A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiology Ecology. 2018;94: fiy093. https://doi.org/10.1093/femsec/fiy093
41. Oni F.E., Geudens N., Adiobo A., Omoboye O.O. et al. Biosynthesis and Antimicrobial Activity of Pseudodesmin and Viscosinamide Cyclic Lipopeptides Produced by Pseudomonads Associated with the Cocoyam Rhizosphere. Microorganisms. 2020;8(7):1079. https://doi.org/10.3390/microorganisms8071079
42. Sheng J., Qin X., Yang X., Liu Q., Ma Z. The biocontrol roles of cyclic lipopeptide putisolvin produced from Pseudomonas capeferrum HN2-3 on the Phytophthora blight disease in cucumbers. J Plant Dis Prot. 2024;131:423-432. https://doi.org/10.1007/s41348-024-00874-5
43. Gotze S., Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from Pseudomonads. Nat. Prod. Rep. 2020;37:29-54. https://doi.org/10.1039/C9NP00022D
44. Oni F.E., Geudens N., Onyeka J.T., Olorunleke O.F. et al. Cyclic lipopeptide-producing Pseudomonas koreensis group strains dominate the cocoyam rhizosphere of a Pythium root rot suppressive soil contrasting with P. putida prominence in conducive soils. Environ. Microbiol. 2020 https://doi.org/10.1111/1462-2920.15127
45. Sreedharan S.M., Rishi N., Singh R. Microbial lipopeptides: properties, mechanics and engineering for novel lipopeptides. Microbiol Res. 2023;271: 127363. https://doi.org/10.1016/j.micres.2023.127363
46. Muamgkaew P., De Roo V., Zhou L., Girard L. et al. Stereomeric lipopeptides from a single non-ribosomal peptide synthetase as an additional source of structural and functional diversification in Pseudomonas lipopeptide biosynthesis. Int. J. Mol. Sci. 2023;24(18):14302. https://doi.org/10.3390/ijms241814302
47. Maslennikova S.N., karakotov S.D. A promising strain Pseudomonas asplenii 11RW as a source for biofungicide development. Agrochemical Herald. 2021;1:43-47 (In Russ.) https://doi.org/10.24412/1029-2551-2021-1-008
48. Chanhan V., Mazumdar S., Pandey A., kanwar S.S. Pseudomonas lipopeptide: an excellent biomedical agent. Med. Com. Biomaterials and Application. 2023;2(1):2e27. https://doi.org/10.1002/mba.2.27
49. Zheleznyakov S.V., kalinina T.V., Deeva V.k., Laktionov Yu.V., Jakobi L.M. The study of Agrobacterium radiobacter 10 and Pseudomonas fluorescens pg7 phosphate-mobilizing abilities in vitro. Agricultural Biology. 2022;51(1):158-170. (In Russ.) https://doi.org/10.15389/agrobiology.2022.1.158rus
50. Yadav D.R., Adhikari M., kim S.W., kim H.S., Lee Y.S. Supression of Fusarium wilt by Fusarium oxysporum f.sp. lactucae and growth promotion on lettuce using bacterial isolates. J. Microbial. Biotechnol. 2021;31(9):1241-1255. https://doi.org/10.4014/jmb.2104.04026
51. Badrakia J.,Patel k.B.,Dhandhukia P.,Thakker J.N.MycoparasiticPseudomonas spp. against infection of Fusarium chlamydosporum pathogen in soyabean (Glycine max) plant. Archives of Phytopathology and Plant Protection. 2021;54(19-20):2160-2170. https://doi.org/10.1080/03235408.2021.1925433
52. Collinge D.B., Funck Jense D., Rabiey M., Sarrocco S. et al. Biological control of plant diseases – what has been achieved and what is the direction? Plant Pathology. 2022;71(5):1024-1047. https://doi.org/10.1111/ppa.13555
53. Frumkin B.E.Common Agricultural Policy (March-May 2023). Evropeyskiysoyuz: fakty i kommentarii. 2023;112:39-44. (In Russ.) https://doi.org/10.1521/eufacts220206470
Review
For citations:
Sidorova T.M., Allahverdyan V.V., Asaturova A.M. Bacterial agents as the basis of biofungicides effective against toxin-producing fungi of the genus Fusarium (review). IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2024;(5):68-85. (In Russ.) https://doi.org/10.26897/0021-342X-2024-5-68-85