Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

Factors affecting gynogenesis induction in cucumber (Cucumis sativus L.) through ovary culture

https://doi.org/10.26897/0021-342X-2024-3-63-77

Abstract

Improving the efficiency of doubled haploid technology is an urgent task to expand the possibilities of fundamental research and to increase the selection rate of commercial F1 hybrids. This study investigated the effect of the components of the induction nutrient medium: casein hydrolyzate ( 250 mg/l and 500 mg/l ) , glutathione  ( 10 mg/l) , a combination of growth regulators TDZ  ( 0.04 mg/l)  and 2,4-D ( 0.15 mg/l)  on the gynogenic response of cucumber in unfertilized ovules culture. The results showed that the addition of 250 mg/l of casein hydrolysate to the induction medium resulted in a more than twofold increase in the frequency of gynogenic ovules in two samples. The addition of 10 mg/l of glutathione to the induction medium helps to increase the frequency of gynogenic ovules by 1.5 to 2 times in 3 out of 6 samples. The results showed that cultivation of cucumber ovary fragments on the induction medium supplemented with 0.5 mg/l of putrescine leads to decrease in frequency of gynogenic ovules. The obtained data on the influence of the components of the induction medium in the culture of ovules can be used to optimize the technology for the production of doubled haploids in cucumber.

About the Authors

E. V. Osminina
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Ekaterina V.  Osminina, Assistant  at  the  Department  of  Botany,  Plant Breeding and  Seed  Technology

49 Timiryazevskaya St., Moscow, 127550



A. V. Vishnyakova
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Anastasiya V.  Vishnyakova,   CSc  (Agr), Associate  Professor  at  the Department of Botany, Plant Breeding and Seed Technology

49 Timiryazevskaya St., Moscow, 127550



Ya. T. Eydlin
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Yakov  T.  Eydlin,  Assistant  at  the  Department  of  Botany,  Plant  Breeding and  Seed  Technology

49 Timiryazevskaya St., Moscow, 127550



E. R. Murzina
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Elvira R.  Murzina,   Assistant  at  the  Department  of  Botany,  Plant  Breeding and  Seed  Technology

49 Timiryazevskaya St., Moscow, 127550



A. A. Mironov
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Aleksey A.  Mironov,  CSc  (Ag),  Associate  Professor,  Associate  Professor at the Department of Botany, Plant Breeding and Seed Technology

49 Timiryazevskaya St., Moscow, 127550



D. D. Lisovaya
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Daria D.  Lisovaya,  Assistant  at  the  Department  of  Botany,  Plant  Breeding and  Seed  Technology

49 Timiryazevskaya St., Moscow, 127550



S. G. Monakhos
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Sokrat  G. Monakhos, DSc (Agr), Professor, head of the Department Botany, Plant Breeding and Seed Technology

49 Timiryazevskaya St., Moscow, 127550

phone: (499) 976–41–71



References

1. Vishnyakova A.V., Aleksandrova A.A., Monakhos S.G. Factors of direct germination of microspore derived embryos of Brassica napus L. Izvestiya of Timiryazev Agricultural Academy (TAA). 2022;1(6):43–53. (In Russ.) https://doi.org/10.26897/0021-342X‑2022-6-43-53

2. Grigolava T.R., Vishnyakova A.V., Sinitsyna A.A., Voronina A.V. et al. Methodological approaches for producing doubled haploids in sugar beet and red beet (Deta vulgaris L.). Vavilov Journal of Genetics and Breeding. 2021;25(3):276–283. (In Russ.) https://doi.org/10.18699/VJ21.031

3. Domblides E.A., Shmykova N.A., Belov S.N., Korottseva I.B., Soldatenko A.V. DH-plant production in culture of unpollinated ovules of cucumber (Cucumis sativus L.). Vegetable crops of Russia. 2019;(6):3–9. (In Russ.) https://doi.org/10.18619/2072-9146-2019-6-3-9

4. Osminina E.V., Monahos S.G. Peculiarities of gynogenesis induction in culture of isolated seed bracts and ovary fragments of Cucumis sativus L. Mezhdunarodnaya nauchnaya konferentsiya molodykh uchyonykh i spetsialistov, posvyashchyonnaya 135-letiyu so dnya rozhdeniya A.N. Kostyakova. June 06–08, 2022. Moscow, Russia: Russian State Agrarian University-Moscow Agricultural Academy named after K.A. Timiryazev, 2022;2:301–304. (In Russ.)

5. Shmykova N.A., Khimich G.A., Korotseva I.B., Domblides E.A. Prospective of development of doubled haploid plants of Cucurbitaceae family. Vegetable crops of Russia. 2015;(3–4):28–31. (In Russ.) https://doi.org/10.18619/2072-9146-2015-3-4-28-31

6. Ahmad N., Anis M. In Vitro Mass Propagation of Cucumis sativus L. from Nodal Segments // Turkish Journal of Botany. – 2005. – Vol. 29, № 3. – Pр. 237–240.

7. Baktemur G., Keles D., Kara E. et al. Effects of Genotype and Nutrient Medium on Obtaining Haploid Plants through Ovary Culture in Cucumber // Molecular Biology Reports. – 2022. – Vol. 49, № 6. – Pр. 5451–5458.

8. Bednarek P.T., Orłowska R., Mankowski D.R. et al. Glutathione and Copper Ions as Critical Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture // Frontiers in Plant Science. – 2022. – Vol. 13. – Art. 926305. DOI: 10.3389/fpls.2022.926305.

9. Deng Y., Tang B., Zhou X. et al. Direct Regeneration of Haploid or Doubled Haploid Plantlets in Cucumber (Cucumis sativus L.) through Ovary Culture // Plant Cell, Tissue and Organ Culture. – 2020. – Vol. 142, № 2. – Pр. 253–268.

10. Diao W.P., Jia Y.Y., Song H. et al. Efficient Embryo Induction in Cucumber Ovary Culture and Homozygous Identification of the Regenetants Using SSR Markers // Scientia Horticulturae. – 2009. – Vol. 119, № 3. – Pр. 246–251.

11. Dong Y.Q., Zhao W.X., Li X.H. et al. Androgenesis, Gynogenesis, and Parthenogenesis Haploids in cucurbit species // Plant Cell Reports. – 2016. – Vol. 35. – Pр. 1991–2019.

12. Elmeer K.E.S. Factors Regulating somatic embryogenesis in plants // Somatic Embryogenesis and Gene Expression. – New Delhi: Narosa Publ., 2013. – Pр. 56–81.

13. Erol M.H., Sarı N. The Effect of Ovule-ovary Culture and Spermidine-putrescine Applications on Haploid Embryo Induction of Cucumber (Cucumis sativus L.) // Alatarim. – 2019. – Vol. 18, № 2. – Pр. 108–117.

14. Gemes-Juhasz A., Balogh Р., Ferenczy А., Kristof Z. Treatment on In Vitro Gynogenesis Induction in Cucumber (Cucumis sativus L.) // Effect of Optimal Stage of Female Gametophyte and Heat Plant Cell Reports. – 2002. – Vol. 21. – Pр. 105–111.

15. Golabadi M., Ghanbari Y., Keighobadi K., Ercisli S. Embryo and Callus Induction by Different Factors in Ovary Culture of Cucumber // Journal of Applied Botany and Food Quality. – 2017. – Vol. 90. – Pр. 68–75. DOI: 10.5073/JABFQ.2017.090.010.

16. Li J.W., Si S.W., Cheng J.Y. et al. Thidiazuron and Silver Nitrate Enhanced Gynogenesis of Unfertilized Ovule Cultures of Cucumis sativus // Biologia Plantarum. – 2013. – Vol. 57, № 1. – Pр. 164–168.

17. Shalaby T.A. Factors Affecting Haploid Induction through In Vitro Gynogenesis in Summer Squash (Cucurbita pepo L.) // Scientia Horticulturae. – 2007. – Vol. 115, № 1. – Pр. 1–6. DOI: 10.1016/j.scienta.2007.07.008.

18. Skalova D., Ondrej V., Dolezalova I. et al. Polyploidization Facilitates Biotechnological In Vitro Techniques in the Genus Cucumis // BioMed Research International. – 2010. – Vol. 2010. – Art. 475432. DOI: 10.1155/2010/475432.

19. Sriskandarajah S., Sameri М., Lerceteau-Köhler Е., Westerbergh А. Increased Recovery of green doubled haploid plants from barley anther culture // Crop Science. – 2015. – Vol. 55, № 6. – Pр. 2806–2812. DOI: 10.2135/cropsci2015.04.0245.

20. Tang F. In Vitro Production of Haploid and Doubled Haploid Plants from Pollinated Ovaries of Maize (Zea mays) // Plant Cell, Tissue and Organ Culture. – 2006. – Vol. 84. – Pр. 233–237.

21. Tantasawat P.A., Sorntip A., Poolsawat O. et al. Evaluation of Factors Affecting Embryo-like Structure and Callus Formation in Unpollinated Ovary Culture of Cucumber (Cucumis sativus) // International Journal of Agriculture and Biology. – 2015. – Vol. 17, № 3. – Pр. 613–618. https://doi.org/10.17957/ijab.17.3.14.257.

22. Thiruvengadam M., Chung I.M. Phenolic Compound Production and Biological Activities from In Vitro Regenerated Plants of Gherkin (Cucumis anguria L.) // Electronic Journal of Biotechnology. – 2015. – Vol. 18, № 4. – Pр. 295–301.

23. Thiruvengadam M., Rekha K.T., Jayabalan N. et al. Effect of Exogenous Polyamines Enhances Somatic Embryogenesis via Suspension Cultures of Spine Gourd (Momordica dioica Roxb. ex. Willd.) // Australian Journal of Crop Science. – 2013. – Vol. 7, № 3. – Pр. 446–453.

24. Wędzony M., Forster B.P., Żur I. et al. Progress in Doubled Haploid Technology in Higher Plants // Advances in Haploid Production in Higher Plants. – 2009. – Pр. 1–33.

25. Lee S.Y., Lee J.H., Kwon T.O. Selection of Salt-tolerant Doubled Haploids in Rice Anther Culture // Plant Cell, Tissue and Organ Culture. – 2003. – Vol. 74. – Pр. 143–149.

26. Zeng A., Song L., Cui Y., Yan J. Reduced Ascorbate and Reduced Glutathione Improve Embryogenesis in Broccoli Microspore Culture // South African Journal of Botany. – 2017. – Vol. 109. – Pр. 275–280. DOI: 10.1016/j.sajb.2017.01.005.

27. Zhu Y., Sun D., Deng Y. Regeneration of double haploid plants from unpollinated ovary cultures of watermelon // Research Square. – 2019. – URL: https://www.researchsquare.com/article/rs-4797/v1/ (дата обращения: 12.02.2024). DOI: 10.21203/rs.2.14098/v1.

28. Zieliński K., Krzewska M., Żur I. et al. The Effect of Glutathione and Mannitol on Androgenesis in Anther and Isolated Microspore Cultures of Rye (Secale cereale L.) // Plant Cell, Tissue and Organ Culture. – 2020. – Vol. 140, № 3. – Pр. 577–592. DOI: 10.1007/s11240-019-01754-9.

29. Żur I., Dubas E., Krzewska M. et al. Glutathione Provides Antioxidative Defence and Promotes Microspore-derived Embryo Development in Isolated Microspore Cultures of Triticale (× Triticosecale Wittm.) // Plant Cell Reports. – 2019. – Vol. 38. – Pр. 195–209. DOI: 10.1007/s00299-018-2362-x.


Review

For citations:


Osminina E.V., Vishnyakova A.V., Eydlin Ya.T., Murzina E.R., Mironov A.A., Lisovaya D.D., Monakhos S.G. Factors affecting gynogenesis induction in cucumber (Cucumis sativus L.) through ovary culture. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2024;1(3):63-77. (In Russ.) https://doi.org/10.26897/0021-342X-2024-3-63-77

Views: 139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)