Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

Models for predicting the level of zinc in the muscle tissue of cattle

https://doi.org/10.26897/0021-342X-2023-1-89-103

Abstract

Biochemical processes occurring in of cattle related to their elemental status. Therefore, the search for models of in vivo assessment of the level of zinc in the muscle tissue of animals is relevant. The level of zinc in muscle tissue influences the quality indicators of beef. The samples of the diaphragmatic muscle weighing 100 g were taken from Hereford cattle bred under typical conditions of an agribusiness sector in the south of Western Siberia (Russia). Elemental analysis was carried out by the atomic absorption method with electrothermal atomization on a spectrometer MGA-1000. Measuring of hematological parameters – erythrocyte, leucocyte and haemoglobin levels – was carried out on an automatic hematological analyzer PCE-90VET. Biochemical parameters were determined using photometric methods on a Photometer-5010 biochemical analyzer. The coefficients of regression models were calculated using the least squares method. The choice of the most accurate and effective model was made on the basis of a comprehensive assessment of indicators of internal and external quality criteria. The values of the dependent variable correspond to the Gaussian one. A high correlation between independent variables was revealed. The selection based on internal and external quality criteria revealed an optimal model for predicting the level of zinc in muscle tissue of Hereford cattle, containing three predictors: erythrocyte sedimentation rate (mm/h), color index and total cholesterol (mmol/l). The model meets the necessary assumptions: the residuals are normally distributed, there are no autocorrelations, and the observations are influential. There is no evidence of multicolleniality between the main effects of the main model (VIF = 1.0–1.1). The resulting model can be used for in vivo assessment of the level of zinc in the muscle tissue of cattle.

About the Author

K. N. Narozhnykh
Novosibirsk State Agrarian University
Russian Federation

Kirill N. Narozhnykh, CSc (Bio), Head of the Laboratory

160 Dobrolyubova Str., Novosibirsk, 630039

phone: (952) 938–38–91



References

1. Kosolapov V.M., Chuykov V.A., Khudyakova Kh.K., Kosolapova V.G. Mineral’nye elementy v kormakh i metody ikh analiza [Mineral elements in feed and methods of their analysis]. M.: OOO “Ugreshskaya tipografiya”. 2019: 272. (In Rus.)

2. McDonald P.M., R.A. Edwards, Greenhalgh J.F.D., Morgan C.A., Sinclair L.A., Wilkinson R.G. Animal nutrition. Greenhalgh. Pearson Education. 2022: 752.

3. Shah O.S., Baba A.R., Dar Z.A., Hussain T., Amin U., Jan A., Asharaf I., Nabi S.U., Haq A.U. Zinc as an element of therapeutic importance: A review. The Pharma Innovation Journal. 2017; 6 (12): 433–436.

4. Karpenko A.F., Razumovskiy N.P., Sobolev D.T., Tsarenok A.A. Polnotsennoe kormlenie vysokoproduktivnykh korov: monografiya [Complete feeding of highly productive cows: monograph]. Minsk: Belaruskaya navuka, 2021: 430. (In Rus.)

5. Suttle N.F. Mineral Nutrition of Livestock. 4th Edition. Cambridge: CABI. 2010: 420–450.

6. Fadlalla I.M. The Interactions of Some Minerals Elements in Health and Reproductive Performance of Dairy Cows, in New Advances in the Dairy Industry. London. IntechOpen. 2022: 29.

7. Yousif H.M., Rezk R.A.E.S.A., El Mahdy A.M. Changes in Hormones and Some Antioxidant Markers That Correlated to Zinc Deficiency and Affecting Wool Growth in Male Lambs. Journal of Current Veterinary Research. 2022: 4 (2): 22–30.

8. Cousins R.J. Role of zinc in the regulation of gene expression. Proceedings of the Nutrition Society. 1998; 57: 307–311.

9. Krebs N.F. Overview of zinc absorption and excretion in the human gastrointestinal tract. The Journal of nutrition. 2000; 130 (5): 1374S-1377S.

10. Miller W.J. Absorption, tissue distribution, endogenous excretion, and homeostatic control of zinc in ruminants. The American journal of clinical nutrition. 1969; 22; 10: 1323–1331.

11. Miroshnikov S.A. Regional’nye osobennosti elementnogo sostava shersti krupnogo rogatogo skota (rezul’taty pilotnogo issledovaniya) [Regional features of the elemental composition of cattle wool (results of a pilot study)]. Vestnik myasnogo skotovodstva. 2015; 2(90): 7–10. (In Rus.)

12. Skal’niy A.V., Lakarova E.V., Kuznetsov V.V., Skal’naya M.G. Analiticheskie metody v bioelementologii [Analytical methods in bioelementology]. Spb.: Nauka, 2009: 576. (In Rus.)

13. Miroshnikov S.A., Lebedev S.V. Diapazon kontsentratsii (referentnye znacheniya) khimicheskikh elementov v tele zhivotnykh [Range of concentrations (reference values) of chemical elements in the body of animals]. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2009; 6(112): 241–243. (In Rus.)

14. Skal’niy A.V., Frolov A.N., Zav’yalov O.A., Miroshnikov S.A. Mikroelementozy cheloveka: gigienicheskaya diagnostika i korrektsiya [Human microelementoses: hygienic diagnostics and correction]. Mikroelementy v meditsine. 2000; 1 (1): 2–8. (In Rus.)

15. Kharlamov A.V., Frolov A.N., Zav’yalov O.A., Miroshnikov S.A. Informativnost’ biosubstratov pri otsenke elementnogo statusa sel’skokhozyaistvennykh zhivotnykh (obzor) [Informativity of biosubstrates in assessing the elemental status of farm animals (review)]. Vestnik myasnogo skotovodstva. 2014; 4(87): 53–58. (In Rus.)

16. Zuur A.F., Ieno E.N., Elphick C.S. A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution. 2010; 1; 1: 3–14.

17. Adikaram K.L.B., Hussein M.A., Effenberger M., Becker T. Data transformation technique to improve the outlier detection power of Grubbs’ test for data expected to follow linear relation. Journal of applied mathematics. 2015; 2015: 1–9.

18. Razali N.M., Wah Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics. 2011; 2 (1): 21–33.

19. Xiao W. Novel online algorithms for nonparametric correlations with application to analyze sensor data. 2019 IEEE International Conference on Big Data. 2019: 404–412.

20. Aickin M., Gensler H. Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. American journal of public health. 1996; 86 (5): 726–728.

21. Baymishev Kh.B., Savinkov A.V. Veterinarnaya gematologiya: metodicheskie ukazaniya dlya vypolneniya prakticheskikh rabot [Veterinary hematology: guidelines for practical work]. Kinel’: RITs SGSKhA, 2014: 34. (In Rus.)

22. Vasil’ev Yu.G., Troshin E.I., Lyubimov A.I. Veterinarnaya klinicheskaya gematologiya: Uchebnoe posobie [Veterinary clinical hematology: textbook]. Spb.: Izdatel’stvo “Lan’”. 2022: 656. (In Rus.)

23. Vasil’eva S.V., Konopatov Yu.V. Klinicheskaya biokhimiya krupnogo roga togo skota: uchebnoe posobie dlya vuzov [Clinical biochemistry of bovine animals: textbook for universities]. Spb.: Lan’, 2021: 188. (In Rus.)

24. Chen Y. Spatial autocorrelation approaches to testing residuals from least squares regression. PloS one. 2016; 11; 1: e0146865.


Review

For citations:


Narozhnykh K.N. Models for predicting the level of zinc in the muscle tissue of cattle. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2023;(1):89-103. (In Russ.) https://doi.org/10.26897/0021-342X-2023-1-89-103

Views: 149


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)