Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

To the issue of genetic improvement of prolificacy in sheep

https://doi.org/10.26897/0021-342X-2023-3-108-127

Abstract

Most sheep breeds are low-prolific, which, along with other reasons, leads to low profitability of the industry. In intensive systems of industrial sheep breeding, high prolificacy of sheep can increase the efficiency of sheep production. Cross-breeding of low-prolific breeds with high-prolific breeds has been the main means of genetic improvement of prolificacy, while intra-breed selection has been considered relatively ineffective due to low heritability of the trait. Mutations that reliably affect ovulation rate and hence lamb numbers have been found in several breeds around the world in genes designated as “major genes”. Most of these mutations are mapped in genes related to the TGFβ superfamily. Genotyping for these major genes permits the use of a marker-assisted selection method for crossbreeding to introduce useful mutations into new breeds. Mitochondrial DNA analysis, whole genome association studies (GWAS), whole genome sequencing, transcriptome analysis and proteomic studies of high- and low-prolific sheep have identified additional genetic variations with moderate or minor effects on prolificacy. Using information on polymorphisms in these “medium genes” and “minor genes” may facilitate selection work for higher prolificacy within a particular production system. Although high prolificacy is associated with a risk of pregnancy toxicosis, increased embryonic mortality, reduced lamb survival in early postnatal ontogeny, and a high risk of shortening the productive longevity of sheep, the prospect is to identify a set of genes with moderate effects on prolificacy.

About the Authors

M. I. Selionova
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Marina I. Selionova, DSc (Bio), Professor of the Russian Academy of Sciences, Head of the Department of Animal Breeding

49, Timiryazevskaya Str., Moscow, 127434

phone: (499) 976–34–34



А.-М. М. Aybazov
North Caucasus Federal Agrarian Research Centre
Russian Federation

Ali-Magomet M. Aybazov, DSc (Ag), Professor, Chief Research Associate

15, Zootekhnicheskiy Lane, Stavropol, 355002

phone: (8652) 71–95–59



References

1. Aybazov A. - M.M., Mamontova T.V. Efficient Reproduction of Sheep and Goats: Monograph. Stavropol’: “Stavropol’-Servis-Shkola”, 2020: 212. (In Rus.)

2. Deykin A.V., Selionova M.I., Krivoruchko A.Yu., Kovalenko D.V., Trukhachev V.I. Genetic Markers in Meat Sheep Breeding. Vavilovskiy zhurnal genetiki i selektsii. 2016; 20; 5: 576-583. URL: https://doi.org/10.18699/VJ16.139 (In Rus.)

3. Marzanov N.S., Malyuchenko O.P., Koretskaya E.A., Marzanova S.N., Marzanova L.K., Timoshenko Yu.I., Fayzullaev F.R. Characteristics of the Romanovskaya Breed According to the BMP-15 Locus Responsible for the Multiplicity of Sheep. Rossiyskaya sel’skokhozyaystvennaya nauka. 2019; 3: 47-50. https://doi.org/10.31857/S2500-26272019347-50 (In Rus.)

4. Trukhachev V.I., Selionova M.I., Krivoruchko A.Yu., Aybazov A.M.M. Genetic Markers of Meat Productivity of Sheep (Ovis aries L.). Communication I. Myostatin, calpain, calpastatin. Sel’skokhozyaystvennaya biologiya. 2018; 53; 6: 1107-1119. URL: https://doi.org/10.15389/agrobiology.2018.6.1107rus. (In Rus.)

5. Abdoli R., Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Zamani P., Ferdosi M.H., Gondro C. Genome-wide association study of four composite reproductive traits in Iranian fat-tailed sheep. Reprod. Fertil. Dev. 2019; 31: 1127-1133 URL: https://doi.org/10.1071/RD18282

6. Aboul-Naga A.M. Finnsheep and their crosses under subtropical conditions. Agric. Food Sci. 1988; 60: 473-480. URL: https://doi.org/10.23986/afsci.72323

7. Ap Dewi I., Owen J.B., El-Sheikh A., Axford R.F.E., Beigi-Nassiri M. Variation in ovulation rate and litter size of Cambridge sheep. Animal Science.1996; 62: 489-494. URL: https:// doi.org/10.1017/S1357729800015022

8. Bolormaa S., Brown D.J., Swan A.A., van der Werf J.H.J., Hayes B.J., Daetwyler H.D. Genomic prediction of reproduction traits for Merino sheep. Anim. Genet. 2017; 48: 338-348. URL: https://doi.org/10.1111/age.12541

9. Boylan W. Crossbreeding for fecundity. In: Land R., Robinson D. (Eds.). Genetics of Reproduction in Sheep. Butterwoorth, London, UK, 1985: 19-24.

10. Butterworths Kenyon P.R., Roca Fraga F.J., Blumer S., Thompson A.N. Triplet lambs and their dams-a review of current knowledge and management systems. New Zeal. J. Agric. Res. 2019; 62: 399-437. URL: https://doi.org/10.1080/00288233.2019.1616568

11. Byrne T.J., Ludemann C.I., Amer P.R., Young M.J. Broadening breeding objectives for maternal and terminal sheep. Livest. Sci. 2012; 144: 20-36. URL: https://doi.org/10.1016/j.livsci.2011.10.010

12. Carlson D.F., Lancto C.A., Zang B., Kim E. - S., Walton M., Oldeschulte D., Seabury C., Sonstegard T.S., Fahrenkrug S.C. Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 2016; 34: 479-481. URL: https://doi.org/10.1038/nbt.3560

13. Chaudhari A., Ramanujam R., Ragothaman V. Effect of Booroola fecundity (FeCB) gene on litter size and scope for use in restoration of Nilagiri sheep from threatened status. Rev. Agrária Acadêmica. 2019; 2: 11-16.

14. Chen H.Y., Shen H., Jia B., Zhang Y.S., Wang X.H., Zeng X.C. Differential gene expression in ovaries of Qira black sheep and Hetian sheep using RNA-Seq technique. PLoS One. 2015; 10; e0120170. URL: https://doi.org/10.1371/journal.pone.0120170

15. Chen X., Wang D., Xiang H., Dun W., Brahi D.O.H., Yin T., Zhao X. Mitochondrial DNA T7719G in tRNA-Lys gene affects litter size in Small-tailed Han sheep. J. Anim. Sci. Biotechnol. 2017; 8: 31. URL: https://doi.org/10.1186/s40104-017-0160-x

16. Chong Y., Liu G., Jiang X. Effect of BMPRIB gene on litter size of sheep in China: a meta-analysis. Anim. Reprod. Sci. 2019; 210: 106175. URL: https://doi.org/10.1016/j.anireprosci.2019.106175

17. Dash S., Maity A., Bisoi P.C., Palai T.K., Polley S., Mukherjee A., De S. Coexistence of polymorphism in fecundity genes bmpr 1b and gdf 9 of indian kendrapada sheep. Explor Anim. Med. Res. 2017; 7: 33-38.

18. Davis G.H. Major genes affecting ovulation rate in sheep. Genet. Sel. Evol. 2005; 37: 11-23. URL: https://doi.org/10.1051/gse:2004026

19. Davis G.H., Galloway S.M., Ross I.K., Gregan S.M., Ward J., Nimbkar B.V., Ghalsasi P.M., Nimbkar C., Gray G.D., Subandriyo Inounu I., Tiesnamurti B., Martyniuk E., Eythorsdottir E., Mulsant P., Lecerf F., Hanrahan J.P., Bradford G.E., Wilson T. DNA tests in prolific sheep from eight countries provide new evidence on origin of the booroola (FecB) mutation. Biol. Reprod. 2002; 66: 1869-1874. URL: https://doi.org/10.1095/biolreprod66.6.1869

20. Dinçel D., Ardiçli S., Şamli H., Balci F. Genotype frequency of FecXB (Belclare) mutation of BMP15 gene in Chios (Sakiz) sheep. Uludağ Üniversitesi Vet. Fakültesi Derg. 2018; 37: 1-5. URL: https://doi.org/10.30782/uluvfd.413857

21. Drouilhet L., Mansanet C., Sarry J., Tabet K., Bardou P., Woloszyn F., Lluch J., Harichaux G., Viguié C., Monniaux D., Bodin L., Mulsant P., Fabre S. The highly prolific phenotype of lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genet. 2013; 9; e1003809. URL: https://doi.org/10.1371/journal.pgen.1003809

22. Dwyer C.M., Conington J., Corbiere F., Holmøy I.H., Muri K., Nowak R., Rooke J., Vipond J., Gautier J.M. Invited review: improving neonatal survival in small ruminants: science into practice. Animal. 2016; 10: 449-459. URL: https://doi.org/10.1017/S1751731115001974

23. Fahmy M.H., Davis G.H. Breeds with newly discovered genes for prolificacy. In: Fahmy M.H. (ed.): Prolific Sheep. CAB International, Wallingford, UK, 1996: 174-177.

24. FAOSTAT, 2021. URL: http://www.fao.org/faostat/en/#data/QL (Access date: 31.03.23).

25. Fariello M. - I., Servin B., Tosser-Klopp G., Rupp R., Moreno C., Cristobal M.S., Boitard S. Selection signatures in worldwide sheep populations. PLoS One. 2014; 9; e103813. URL: https://doi.org/10.1371/journal.pone.0103813

26. Fogarty N.M. A review of the effects of the Booroola gene (FecB) on sheep production. Small Rumin. Res. 2009; 85: 75-84. URL: https://doi.org/10.1016/j.smallrumres.2009. 08.003

27. Garel M., Cugnasse J.M., Gaillard J.M., LoisonA., Gibert P., Douvre P., Dubray D. Reproductive output of female mouflon (Ovis gmelini musimon × Ovis sp.): a comparative analysis. J. Zool. 2005; 266: 65-71. https://doi.org/10.1017/S0952836905006667

28. Gates P.J., Urioste J.I. Heritability and sire genetic trend for litter size in Swedish sheep estimated with linear and threshold models. Acta Agric. Scand. Sect. A - Anim. Sci. 1995; 45(4): 228-235. URL: https://doi.org/10.1080/09064709509413081

29. Gelinsky E., Hilbeck A. European Court of Justice ruling regarding new genetic engineering methods scientifically justified: a commentary on the biased reporting about the recent ruling. Environ. Sci. Eur. 2018; 30(1): 52. URL: https://doi.org/10.1186/s12302-018-0182-9

30. Gholizadeh M., Rahimi-Mianji G., Nejati-Javaremi A., De Koning D.J., Jonas E. Genomewide association study to detect QTL for twinning rate in Baluchi sheep. J. Genet. 2014; 93: 489-493. URL: https://doi.org/10.1007/s12041-014-0372-1

31. Gootwine E. Meta-analysis of morphometric parameters of late-gestation fetal sheep developed under natural and artificial constraints. J. Anim. Sci. 2013; 91(1): 111-119. URL: https://doi.org/10.2527/jas.2013-5363

32. Gootwine E. Mini review: breeding Awassi and Assaf sheep for diverse management conditions. Trop. Anim. Health Prod. 2011; 43: 1289-1296. URL: https://doi.org/10.1007/s11250-011-9852-y

33. Gootwine E., Goot H. Lamb and milk production of Awassi and East-Friesian sheep and their crosses under Mediterranean environment. Small Ruminant Research. 1996; 20: 255-260. URL: https://doi.org/10.1016/0921-4488(95)00807-1

34. Heaton M.P., Smith T.P.L., Freking B.A., Workman A.M., Bennett G.L., Carnahan J.K., Kalbfleisch T.S. Using sheep genomes from diverse U.S. Breeds to identify missense variants in genes affecting fecundity. F1000Research. 2017; 6: 1303. URL: https:// doi. org/10.12688/f1000research.12216.1

35. Jia J., Chen Q., Gui L., Jin J., Li Y., Ru Q., Hou S. Association of polymorphisms in bone morphogenetic protein receptor-1B gene exon-9 with litter size in Dorset, Mongolian, and Small Tail Han ewes. Asian-Australasian J. Anim. Sci. 2019; 32: 949-955. URL: https://doi.org/10.5713/ajas.18.0541

36. Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., McCulloch R., Whan V., Gietzen K., Paiva S., Barendse W., Ciani E., Raadsma H., McEwan J., Dalrymple B. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012; 10; e1001258. URL: https://doi.org/10.1371/journal.pbio.1001258

37. La Y., Liu Q., Zhang L., Chu M. Single nucleotide polymorphisms in SLC5A1, CCNA1, and ABCC1 and the association with litter size in small-tail Han sheep. Animals. 2019; 9: 432. URL: https://doi.org/10.3390/ani9070432

38. La Y., Tang J., Guo X., Zhang L., Gan S., Zhang X., Zhang J., Hu W., Chu M. Proteomic analysis of sheep uterus reveals its role in prolificacy. J. Proteomics. 2020; 210: 103526. URL: https://doi.org/10.1016/j.jprot.2019.103526

39. Lassoued N., Benkhlil Z., Woloszyn F., Rejeb A., Aouina M., Rekik M., Fabre S., Bedhiaf-Romdhani S. FecX Bar a Novel BMP15 mutation responsible for prolificacy and female sterility in Tunisian Barbarine Sheep. BMC Genet. 2017; 18: 43. URL: https://doi.org/10.1186/s12863-017-0510-x

40. Lv F.H., Agha S., Kantanen J., Colli L., Stucki S., Kijas J.W., Joost S., Li M.H., Marsan P.A. Adaptations to climate-mediated selective pressures in sheep. Mol. Biol. Evol. 2014; 31: 3324-3343. URL: https://doi.org/10.1093/molbev/msu264

41. Ma H., Fang C., Liu L., Wang Q. Aniwashi J., Sulaiman Y., Abudilaheman K., Liu W. Identification of novel genes associated with litter size of indigenous sheep population in Xinjiang, China using specific-locus amplified fragment sequencing technology. Peer J. 2019; 7; e8079. URL: https://doi.org/10.7717/peerj.8079

42. Martin P., Raoul J., Bodin L. Effects of the FecL major gene in the Lacaune meat sheep population. Genet. Sel. Evol. 2014; 46: 48. URL: https://doi.org/10.1186/1297-9686-46-48

43. McNatty K.P., Heath D.A., Clark Z., Reader K., Juengel J.L., Pitman J.L. Ovarian characteristics in sheep with multiple fecundity genes. Reproduction. 2017; 153: 233-240. URL: https://doi.org/10.1530/REP-16-0587

44. Meadows J.R.S., Cemal I., Karaca O., Gootwine E., Kijas J.W. Five ovine mitochondrial lineages identified from sheep breeds of the near east. Genetics. 2007; 175: 1371-1379. URL: https://doi.org/10.1534/genetics.106.068353

45. Menéndez Buxadera A., Alexandre G., Mandonnet N. Discussion on the importance, definition and genetic components of the number of animals born in the litter with particular emphasis on small ruminants in tropical conditions. Small Rumin. Res. 2004; 54: 1-11. URL: https://doi.org/10.1016/j.smallrumres.2003.10.007

46. Miao X., Luo Q., Zhao H., Qin X. Ovarian proteomic study reveals the possible molecular mechanism for hyper prolificacy of Small Tail Han sheep. Sci. Rep. 2016; 6: 27606. URL: https://doi.org/10.1038/srep27606

47. Miao X., Luo Q., Zhao H., Qin X. Ovarian transcriptomic analysis reveals the alternative splicing events associated with fecundity in different sheep breeds. Anim. Reprod. Sci. 2018; 198: 177-183. URL: https://doi.org/10.1016/j.anireprosci.2018.09.017

48. Nicol L., Bishop S.C., Pong-Wong R., Bendixen C., Holm L.E., Rhind S.M., McNeilly A.S. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction. 2009; 138: 921-933. URL: https://doi.org/10.1530/REP-09-0193

49. Nosrati M., Asadollahpour Nanaei H., Amiri Ghanatsaman Z., Esmailizadeh A. Whole genome sequence analysis to detect signatures of positive selection for high fecundity in sheep. Reprod. Domest. Anim. 2019; 54: 358-364. URL: https://doi.org/10.1111/rda.13368

50. Notter D.R. Genetic aspects of reproduction in sheep. Reprod. Domest. Anim. 2008; 2: 122-128. URL: https://doi.org/10.1111/j.1439-0531.2008.01151.x

51. Piper L.R., Bindon B.M., Davis G.H. The single gene inheritance of the high litter size of the booroola merino. In: Land R.B., Robinson D.W. (Eds.). Genetics of Reproduction in Sheep. Butterworths, London: Elsevier, 1985: 115-125. URL: https://doi.org/10.1016/B978-0-407-00302-6.50016-7

52. Pokharel K., Peippo J., Honkatukia M., Seppälä A., Rautiainen J., Ghanem N., Hamama T.M., Crowe M.A., Andersson M., Li M.H., Kantanen J. Integrated ovarian mRNA and miRNA transcriptome profiling characterizes the genetic basis of prolificacy traits in sheep (Ovis aries). BMC Genomics. - 2018; 19: 1-17. URL: https://doi.org/10.1186/s12864-017-4400-4

53. Praveena K., Ramana D.B.V., Pankaj P.K. Booroola Gene (FecB) Polymorphism and its Liaison with Litter Size in Indigenous Sheep Breeds of Telangana, India. J. Anim. Res. 2017; 7: 227-231. URL: https://doi.org/10.5958/2277-940X.2017.00034.1

54. Raoul J., Palhière I., Astruc J.M., Swan A., Elsen J.M. Optimal mating strategies to manage a heterozygous advantage major gene in sheep. Animal. 2018; 12: 454-463. URL: https://doi.org/10.1017/S1751731117001835

55. Razungles J., Tchamitchian L., Bibe B., Lefevre C., Brunel J., Ricordeau G. The performance of Romanov crosses and their merits as a basis for selection. In: Land R., Robinson D. (Eds.). Genetics of Reproduction in Sheep. Butterworths, London: Elsevier, 1985: 39-45.

56. Reicher S., Gertler A., Seroussi E., Shpilman M., Gootwine E. Biochemical and in vitro biological significance of natural sequence variation in the ovine leptin gene. Gen. Comp. Endocrinol. 2011; 173: 63-71. URL: https://doi.org/10.1016/j.ygcen.2011.04.030

57. Ruan J., Xu J., Chen-Tsai R.Y., Li K. Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Res. 2017; 26: 715-726. URL: https://doi.org/10.1007/s11248-017-0049-7

58. Rummel T., Valle Zàrate A., Gootwine E. The world wide gene flow of the improved awasi and assaf sheep breeds from Israel. In: Valle Zàrate A., Musavaya K., Schäfer C. (Eds.). Gene Flow in Animal Genetic Resources: A Study on Status, Impact and Trends. GTZ, BMZ. 2006: 305-358.

59. Safari E., Fogarty N.M., Gilmour A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005; 92: 271-289. URL: https://doi.org/10.1016/j.livprodsci.2004.09.003

60. SanCristobal-Gaudy M., Bodin L., Elsen J. - M., Chevalet C. Genetic components of litter size variability in sheep. Genet. Sel. Evol. 2001; 33: 249. URL: https://doi.org/10.1186/1297-9686-33-3-249

61. Sinclair K.D., Rutherford K.M.D., Wallace J.M., Brameld J.M., Stöger R., Alberio R., Sweetman D., Gardner D.S., Perry V.E.A., Adam C.L., Ashworth C.J., Robinson J.E., Dwyer C.M. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod. Fertil. Dev. 2016; 28: 1443-1478. URL: https://doi.org/10.1071/RD16102

62. Souza C.J.H., McNeilly A.S., Benavides M.V., Melo E.O., Moraes J.C.F. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Anim. Genet. 2014; 45: 732-739. URL: https://doi.org/10.1111/age.12190

63. Talebi R., Ahmadi A., Afraz F., Sarry J., Woloszyn F., Fabre S. Detection of single nucleotide polymorphisms at major prolificacy genes in the Mehraban sheep and association with litter size. Ann. Anim. Sci. 2018; 18: 685--698. URL: https://doi.org/10.2478/aoas-2018-0014

64. Thomas D.L. Performance and utilization of Northern European short-tailed breeds of sheep and their crosses in North America: a review. Animal. 2010; 4: 1283-1296. URL: https://doi.org/10.1017/S1751731110000856

65. Tian Z.L., Tang J.S., Sun Q., Wang Y.Q., Zhang X.S., Zhang J.L., Chu M.X. Tissue expression and polymorphism of sheep SmaD1 gene and their association with litter size. Sci. Agric. Sin. 2019; 52: 755-766. URL: https://doi.org/10.3864/j.issn.0578-1752.2019.04.015

66. Trukhachev V., Skripkin V., Kvochko A., Yatsyk O., Krivoruchko A., Kulichenko A., Kovalev D., Pisarenko S., Volynkina A., Selionova M., Aybazov M., Shumaenko S., Omarov A., Mamontova T. Polymorphisms of the IGF1 gene in Russian sheep breeds and their influence on some meat production parameters. Slovenian Veterinary Research. 2016; 53; 2: 77-83. EDN XFOXBX.

67. Vera M., Aguion M., Bouza C. Detection of grivette BMP15 prolificacy variant (FecX) in different sheep breeds presented in Galicia (NW Spain). Gene Rep. 2018; 12: 109-114. URL: https://doi.org/10.1016/j.genrep.2018.06.008

68. Wang D., Ning C., Xiang H., Zheng X., Kong M., Yin T., Liu J., Zhao X. Polymorphism of mitochondrial tRNA genes associated with the number of pigs born alive. J. Anim. Sci. Biotechnol. 2018; 9: 86. URL: https://doi.org/10.1186/s40104-018-0299-0

69. Wilson T., Wu X. - Y., Juengel J.L., Ross I.K., Lumsden J.M., Lord E.A., Dodds K.G., Walling G.A., McEwan J.C., O’Connell A.R., McNatty K.P., Montgomery G.W. Highly prolific booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 2001; 64: 1225-1235. URL: https://doi.org/10.1095/ biolreprod64.4.1225

70. Wolfová M., Wolf J., Krupová Z., Margetín M. Estimation of economic values for traits of dairy sheep: II. Model application to a production system with one lambing per year. J. Dairy Sci. 2009; 92: 2195-2203. URL: https://doi.org/10.3168/jds.2008-1412

71. Wu G., Bazer F.W., Satterfield M.C., Li X., Wang X., Johnson G.A., Burghardt R.C., Dai Z., Wang J., Wu Z. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids. 2013; 45(2): 241-256. URL: https://doi.org/10.1007/s00726-013-1515-z

72. Xu S.S., Gao L., Xie X.L., Ren Y.L., Shen Z.Q., Wang F., Shen M., Eypórsdóttir E., Hallsson J.H., Kiseleva T., Kantanen J., Li M.H. Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front. Genet. 2018; 9: 1-14. URL: https://doi.org/10.3389/fgene.2018.00118

73. Yu G., Xiang H., Tian J., Yin J., Pinkert C.A., Li Q., Zhao X. Mitochondrial haplotypes influence metabolic traits in porcine transmitochondrial cybrids. Sci. Rep. 2015; 5: 13118. URL: https://doi.org/10.1038/srep13118

74. Zamir S., Rozov A., Gootwine E. Treatment of pregnancy toxaemia in sheep with flunixin meglumine. Vet. Rec. 2009; 165: 265-266. URL: https://doi.org/10.1136/vr.165.9.265

75. Zheng J., Wang Z., Yang H., Yao X., Yang P., Ren C.F., Wang F., Zhang Y.L. Pituitary transcriptomic study reveals the differential regulation of lncRNAs and mRNAs related to prolificacy in different FecB genotyping sheep. Genes (Basel). 2019; 10: 1-17. URL: https://doi.org/10.3390/genes10020157

76. Zhou M., Pan Z., Cao X., Gu, X., He X., Sun Q., Di R., Hu W., Wang X., Zhang X., Zhang J., Zhang C., Liu Q., Chu M. Single nucleotide polymorphisms in the HIRA gene affect litter size in Small Tail Han sheep. Animals. 2018; 8: 71. URL: https://doi.org/10.3390/ani8050071

77. Zhou S., Yu H., Zhao X., Cai B., Ding Q., Huang Y., Li Yaxin, Li Yan, Niu Y., Lei A., Kou Q., Huang X., Petersen B., Ma B., Chen Y., Wang X. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reprod. Fertil. Dev. 2018; 30: 1616-1621. URL: https://doi.org/10.1071/RD18086


Review

For citations:


Selionova M.I., Aybazov А.М. To the issue of genetic improvement of prolificacy in sheep. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2023;(3):108-127. (In Russ.) https://doi.org/10.26897/0021-342X-2023-3-108-127

Views: 217


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)