Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

Cytotoxicity of pyranopyridones with tryptamine fragment

https://doi.org/10.26897/0021-342X-2023-3-5-24

Abstract

New derivatives of pyrano[3,2-c]pyridones III 5, 10, 15, 18 were synthesised by threecomponent reaction of pyridonotryptamines I, aromatic aldehydes II and malononitril. Pyridonotryptamines I were synthesised by reaction of tryptamines (these compounds were obtained by Grandberg reaction of arylhydrazines with γ-halogencarbonyl compounds) with 4-hydroxy- 6-methyl-2H-pyran- 2-on. The aromatic aldehydes II 1, 5, 6, 9 are commercially available compounds. Boiling a mixture of compounds I, II and malononitril (molar ratio 1:1.1:1.1) in ethyl alcohol in the presence of triethylamine gives the target compounds III 5, 10, 15, 18. The product yields 44–75%. The structure of pyrano[3,2-c]pyridones with tryptamine fragment III (four compounds) was proved by 1H NMR and confirmed by elemental analysis. Compounds III 1–4, 6–9, 11–14, 16 and 17 were synthesised earlier by a similar procedure.

The cytotoxicity of the synthesised compounds III 1–18 was determined in vitro using the MTT test on human cell cultures A549 (lung carcinoma) and HCT116 (colorectal carcinoma). Camptothecin and daunorubicin were used as reference drugs. The value of the concentration inducing 50% inhibition of the cell growth (IC50, μM) was determined from the dose-response curves using GraphPad Prism 9 software. Compounds III 3 (R1=R2=Br, Ar=2,5-di-OMe-С6Н3,) III 4 (R1=R2=Br, Ar=4-F-С6Н4), III 6 (R1=Ме, R2=Н, Ar=2,4,5-tris-OMe-С6Н2), III 13 (R1=R2=Br, Ar=Ph), III 14 (R1=R2=Br, Ar=2,3-di-OMe-С6Н3) and III 16 (R1=R2=Br, Ar=Py) showed the best results for A549 and HCT116 cultures. The effect of the most active compounds III 3 and III 4 on the cell cycle and apoptosis was studied on Jurkat cell culture (human acute T-cell leukemia). Compounds III 3 and III 4 showed significant cytotoxicity against the Jurkat line in the resazurin test – 1.47 ± 0.06 and 4.56 ± 0.19 μM, respectively, comparable to the cytotoxicity of the reference drug camptothecin of 1.24 ± 0.05 μM. Based on the flow cytometry results, it is suggested that the effect is manifested by some (possibly reversible) cell cycle arrest in the presynthetic phase.

About the Authors

N. M. Przhevalskiy
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Nikolay M. Przhevalskiy, DSc (Chem), Professor of the Department of Chemistry

49, Timiryazevskaya Str., Moscow, 127434

phone: (903) 681–48–23



L. V. Anikina
Institute of Physiologically Active Substances of the Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Russian Federation

Lada V. Anikina, CSc (Bio), Leading Research Associate, Laboratory of Natural Compounds

1-iy Severniy Passage, Chernogolovka, Moscow region, 142432

phone: (919) 712–01–70



A. A. Globa
Institute of Physiologically Active Substances of the Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Russian Federation

Anastasiya A. Globa, Junior Research Associate, Laboratory of Natural Compounds

1-iy Severniy Passage, Chernogolovka, Moscow region, 142432



G. P. Tokmakov
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Gennadiy Petrovich Tokmakov, DSc (Chem), Professor of the Department of Chemistry

49, Timiryazevskaya Str., Moscow, 127434



R. K. Laypanov
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Rustam K. Laypanov, external post-graduate student, Department of Chemistry

49, Timiryazevskaya Str., Moscow, 127434



D. A. Vershinkin
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Danila A. Vershinkin, Research Associate, Service Laboratory for Complex Analysis of Chemical Compounds

49, Timiryazevskaya Str., Moscow, 127434



References

1. Anikina L.V., Semakov A.V., Pukhov S.A., Afanas’eva S.V., Klochkov S.G. Comparison of Cytotoxicity of Two Anthracycline Antibiotics against Normal and Tumour Cell Lines. Sovremennye problemy nauki i obrazovaniya. 2016; No 2. URL: https://science-education.ru/ru/article/view?id=24159 (In Rus.)

2. Bidylo T.I., Urovskaya M.A. Synthesis of Tryptamines by the Fisher Method Using Synthetic Precursor and Latent Forms of Amino-Butanal (Review). Khimiya geterotsiklicheskikh soedineniy. 2008; 4: 493-538. URL: https://doi.org/10.1039/B911516C (In Rus.)

3. Laypanov R.K., Tokmakov G.P., Denisov P.D., Przhevalskiy N.M. Grandberg Synthesis of Tryptamines for Multicomponent Reactions. Izvestiya TSKhA. 2012; 5: 123-129. (In Rus.)

4. Laypanov R.K., Tokmakov G.P., Przhevalskii N.M. Synthesis of New Biologically Active Pyridone-2 Derivatives with a Tryptamine Fragment. Izvestiya TSKhA. 2014; 4: 90-101. (In Rus.)

5. Przhevalskiy N.M., Anikina L.V., Globa A.A., Tokmakov G.P., Laypanov R.K., Vershinkin D.A. Cytotoxic Activity of New Derivatives of Tryptamines. Sbornik tezisov dokladov Vserossiyskogo kongressa po khimii geterotsiklicheskikh soedineniy “KOST-2021”. Sochi. 12-16 oktyabrya 2021 g. 2021: 263. URL: https://kpfu.ru/staff_files/F764429877/Abstracts_KOST2021_final.pdf. (In Rus.)

6. Przhevalskiy N.M., Laypanov R.K., Tokmakov G.P., Lukina I.V., Vershinkin D.A., Tafeenko V.A. Synthesis of New Potentially Biologically Active Pyranopyridones with Tryptamine Fragment. Izvestiya Academii nauk. Seriya Chimicheskaya. 2021; 3: 555-561. URL: https://doi.org/10.1007/s11172-021-3124-4. (In Rus.)

7. Przhevalskiy N.M., Laypanov R.K., Tokmakov G.P., Nam N.L. Grandberg Reaction in the Synthesis of Biological Active Compounds. Izvestiya Academii nauk. Seriya Khimicheskaya. 2016; 7: 1709-1715. URL: https://doi.org/10.1007/s11172-016-1499-4. (In Rus.)

8. Przhevalskiy N.M., Laypanov R.K., Tokmakov G.P., Rozhkova E.N. Three-Component Synthesis Of Novel Pyrano[3,2-C]Pyridone Derivatives. Izvestiya TSKhA. 2015; 6: 67-78. (In Rus.)

9. Przhevalskiy N.M., Laypanov R.K., Tokmakov G.P., Rozhkova E.N. Synthesis of Potentially Cytotoxic Bromo Derivatives of Pyrano[3,2-C]Pyridines. Izvestiya TSKhA. 2017; 3: 146-158. (In Rus.)

10. Pukhov S.A., Anikina L.V., Larin A.A., Fershtat L.L., Kulikov A.S., Makhova N.N. Cytotoxic Effect of Heterylfuroxanes and Induction of Apoptosis in Chronic Myeloid Leukaemia K562 Cell Culture. Izvestiya Academii nauk. Seriya Khimicheskaya. 2019; 1: 158-162. (In Rus.)

11. Pukhov S.A., Neganova M.E., Anikina L.V., Shevtsova E.F., Afanas’eva S.V., Klochkov S.V. Inhibition of Breast Adenocarcinoma Cell Growth by Epoxyalantolactone and Its Derivatives. Fundamental’nye issledovaniya. 2014; 9: 1988-1992. (In Rus.)

12. Aksenov N.A., Aksenov A.V., Kornienko A., De Carvalho A., Mathieu V., Aksenov D.A., Ovcharov S.V., Griaznov G.D., Rubin M.A. Nitroalkane based approach to one-pot three-component synthesis of isocryptolepine and its analogs with potent anticancer activities. RSC Advances. 2018; 8: 36980-36986. URL: https://doi.org/10.1039/C8RA08155G

13. Aksenov D.A., Akulova A.S., Aleksandrova E.A., Aksenov N.A., Leontiev A.V., Aksenov A.V. An effective synthesis of previously unknown 7-aryl substituted paullones. Molecules. 2023; 28; 5: 2324. URL: https://doi.org/10.3390molecules28052324

14. Allen R.T., Hunter W.J., Agrawal D.K. Morphological and biochemical characterization and analysis of apoptosis. Journal of Pharmacological and Toxicological Methods. 1997; 37; 5: 215-228. URL: https://doi.org/10.1016/S1056-8719(97)00033-6

15. Barceloux D.G. Medical Toxicology of Drug Abuse: Synthesized Chemicals and Psychoactive Plants. John Wiley & Sones, Inc.: 2012. Chapter 11. Tryptamine designer drugs. Pp. 193-199. URL: https://doi.org/10.1002/9781118105955.ch11

16. Chen X., Hao B., Li D., Reiter R.J., Bai Y., AbayB., ChenG., Lin S., Zheng T., Ren Y., Xu X., Li M., Fan L. Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis. Journal of Pineal Research. 2021; 71; 2: e12755. URL: https://doi.org/10.1111/jpi.12755

17. Darzynkiewicz Z., Bender E., Smolewski P. Flow cytometry in analysis of cell cycle and apoptosis. Seminаrs in Hematology. 2001; 38; 2: 179-193. URL: https://doi.org/10.1016/s0037-1963(01)90051-4

18. Del Rio B., Redruello B., Fernandez M., Martin M.C., Ladero V., Alvarez M.A. The biogenic amine tryptamine, unlike β-phenylethylamine, shows in vitro cytotoxicity at concentrations that have been found in foods. Food Chemistry. 2020; 331: 127303. URL: https://doi.org/10.1016/j.foodchem.2020.127303

19. Gorobets N.Yu.. Yousefi B.H., Belaj F., Kappe C.O. Rapid microwave-assisted solution phase synthesis of substituted 2-pyridone libraries. Tetrahedron. 2004; 60: 8633. URL: https://doi.org/10.1007/s11172-016-1499-4

20. Jessen H.J., Gademann K. 4-Hydroxy-2-pyridone alkaloids: Structures and synthetic approaches. Natural Product Reports. 2010; 27: 1168-1185. URL: https://doi.org/10.1039/B911516C

21. Kochanowska-Karamyan A.J., Hamman M.T. Marine Indole Alcaloids: Potencial New Drug Leads for the Control of Depression and Anxiety. Chemical Reviews. 2010; 110; 8: 4489-4497. URL: https://doi.org/10.1021/cr900211p

22. Koopman G., Reutelingsperger C.P., Kuijten G.A., Keehnen R.M., Pals S.T., van Oers M.N. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994; 84; 5: 1415-1420.

23. Li Z., Ding B., Ali M.R.K., Zhao L., Zang X., Lv Z. Dual Effect of Tryptamine on Prostate Cancer Cell Growth Regulation: A Pilot Study. International Journal of Molecular Sciencies. 2022.; 23; 19: 11087. URL: https://doi.org/10.3390/ijms231911087

24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of Immunological Methods. 1983; 65; 1-2: 55-63. URL: https://doi.org/10.1016/0022-1759(83)90303-4

25. O’Brien J., Wilson I., Orton T., Pognan F. Investigation of Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry. 2000; 267; 17: 5421-5426. URL: https://doi.org/10.1046/j.1432-1327.2000.01606.x

26. Poroikov V. Computer-assisted prediction and design of Multitargeted drugs. Invited abstracts. Medicinal Chemistry Research. 2010; 19(1): 30. URL: http://dx.doi.org/10.1007/s00044-010-9296-3

27. Pozarowski P., Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods in Molecular Biology. 2004; 281: 301-311. URL: https://doi.org/10.1385/1-59259-811-0:301

28. Qu S. - J., Wang G. - F., Duan W. - H., Yao S. - Y., Zuo J. - P., Tan C. - H., Zhu D. - Y. Tryptamine derivatives as novel non-nucleosidic inhibitors against hepatitis B virus. Bioorganic & Medicinal Chemistry. 2011; 19; 10: 3120-3127. URL: https://doi.org/10.1016/j.bmc.2011.04.004

29. Simonetti G., BogaC., DuranteJ., Micheletti G., TeleseD., Caruana P., di Rorà A.G.L., Mantellini F., Bruno S., Martinelli G., Calonghi N. Synthesis of Novel Tryptamine Derivatives and Their Biological Activity as Antitumor Agents. Molecules. 2021; 26: 3: 683. URL: https://doi.org/10.3390/molecules26030683

30. Vargas A.S., Luís Â., Barroso M., Gallardo E., Pereira L. Psilocybin as a New Approach to Treat Depression and Anxiety in the Context of Life-Threatening Diseases. A Systematic Review and Meta-Analysis of Clinical Trials. Biomedicines. 2020; 8; 9: 331. URL: https://doi.org/10.3390/biomedicines8090331

31. Zhai X., Wang N., Jiao H., Zhang J., Li C., Ren W., Reiter R.J., Su S. Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. Journal of Pineal Research. 2021; 71; 2: e12574. URL: https://doi.org/10.1111/jpi.12754


Review

For citations:


Przhevalskiy N.M., Anikina L.V., Globa A.A., Tokmakov G.P., Laypanov R.K., Vershinkin D.A. Cytotoxicity of pyranopyridones with tryptamine fragment. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2023;(3):5-24. (In Russ.) https://doi.org/10.26897/0021-342X-2023-3-5-24

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)