Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

Evaluation of the resistance of soybean cultivars to bacterial diseases on an artifi cial inoculation background

https://doi.org/10.26897/0021-342X-2022-5-92-107

Abstract

The article is devoted to the scientific and pedagogical activities of the first head of the Department of Agricultural and Forestry Production at the Petrovsky Agricultural and Forestry Academy (nowadays Russian State Agrarian University – Moscow Timiryazev Agricultural Academy). The article describes the period of formation and development of creative and scientific potential of the Russian scientist-technologist from the moment he began his studies at the Yaroslavl gymnasium and St. Petersburg University to his work as the head of the Department of Agricultural and Forestry Production at the Petrovsky Agricultural and Forestry Academy.

About the Author

R. I. Tarakanov
Российский государственный аграрный университет - МСХА имени К.А. Тимирязева
Russian Federation

Rashit I. Tarakanov, post-graduate student, Assistant Professor of the Plant Protection Department

49 Timiryazevskaya Str., Moscow, 127434

phone: (977) 403–54–40



References

1. FAO. World Food and Agriculture – Statistical Yearbook; FAO: Rome, Italy, 2021.

2. Allen T.W., Bradley C.A., Sisson A.J., Byamukama E., Chilvers M.I. Coker C.M., Collins A.A., Damicone J.P., Dorrance A.E., Dufault N.S. Soybean Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Progress. 2017; 18: 19–27.

3. Abudulai M., Salifu A.B., Opare-Atakora D., Haruna M., Denwar N.N., Baba I.I.Y. Yield Loss at the Different Growth Stages in Soybean Due to Insect Pests in Ghana. Archives of Phytopathology and Plant Protection. 2012; 45: 1796–1809.

4. Soltani N., Dille J., Burke I., Everman W., VanGessel M., Davis V., Sikkema P. Perspectives on Potential Soybean Yield Losses from Weeds in North America. Weed Technology. 2017; 31: 148–154.

5. Zhang J., Wang X., Lu Y., Bhusal S.J., Song Q., Cregan P.B., Yen Y., Brown M., Jiang G.L. Genome-Wide Scan for Seed Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding. Mol. Plant. 2018; 11: 460–472.

6. Huang H. – C., Hsieh T. – F., Mündel H. – H., Scott R. A Rapid Indoor Technique for Screening Common Bean (Phaseolus Vulgaris L.) for Resistance to Bacterial Wilt [Curtobacterium Flaccumfaciens Pv. Flaccumfaciens (Hedges) Collins and Jones]. Revista Mexicana de FITOPATOLOGIA. 2003; 3: 364–369.

7. Soares R.M., Fantinato G.G.P., Darben L.M., Marcelino-Guimarães F.C., Seixas C.D.S., Carneiro G.E. de S. First Report of Curtobacterium Flaccumfaciens Pv. Flaccumfaciens on Soybean in Brazil. Trop. plant pathol. 2013; 38: 452–454.

8. Huang H. – C., Ndel H. – H., Erickson R., Chelle C., Balasubramanian P., Kiehn F., Huang H., Ndel M., Erickson H. – H., Balasubramanian C. Bacterial Resistance of Common Bean (Phaseolus Vulgaris L.) Cultivars and Germplasm Lines to the Purple Variant of Bacterial Wilt (Curtobacterium Flaccumfaciens Pv. Flaccumfaciens). Plant Pathol Bull. 2007; 16: 91–95.

9. Camara R.C., Vigo S.C., Maringoni A.C. Plant to seed transmission of Curtobacterium flaccumfaciens pv. flaccumfaciens in a dry bean cultivar. Journal of Plant Pathology. 2009; 91: 549–554.

10. Shepherd L.M., Block C.C. Chapter 13: Detection of Pseudomonas savastanoi pv. glycinea in Soybean Seeds. In Detection of Plant-Pathogenic Bacteria in Seed and Other Planting Material, 2nd ed.; The American Phytopathological Society: St. Paul, MN, USA; 2017. ISBN978–0–89054–539–3

11. Hsieh T.F., Huang H.C., Erickson R.S. Bacterial wilt of common bean: Effect of seedborne inoculum on disease incidence and seedling vigour. Seed Science and Technology. 2006; 34: 57–67.

12. Huang H., Erickson R., Balasubramanian P., Hsieh T. Resurgence of Bacterial Wilt of Common Bean in North America. Canadian Journal of Plant Pathology. 2009; 31: 290–300.

13. Monteil C.L., Yahara K., Studholme D.J., Mageiros L., Méric G., Swingle B., Morris C.E., Vinatzer B.A., Sheppard S.K. Population-Genomic Insights into Emergence, Crop Adaptation and Dissemination of Pseudomonas Syringae Pathogens. Microb. Genom. 2016; 2: e000089.

14. Fernandes da Silva Júnior T., Maringoni A., Negrão D. Survival of Curtobacterium Flaccumfaciens Pv. Flaccumfaciens in Soil and Bean Crop Debris. Journal of Plant Pathology. 2012; 94.

15. Tarakanov R.I., Lukianova A.A., Evseev P.V.; Toshchakov S.V., Kulikov E.E.; Ignatov A.N.; Miroshnikov K.A.; Dzhalilov F.S. – U. Bacteriophage Control of Pseudomonas savastanoi pv. glycinea in Soybean. Plants. 2022; 11: 938.

16. Tarakanov R., Lukianova A., Pilik R., Evseev P., Miroshnikov K., Dzhalilov F., Ignatov A. First report of Curtobacterium flaccumfaciens pv. flaccumfaciens causing a bacterial tan spot of soybean in Russia. Plant Disease. 2022. (in press)

17. Ignjatov M., Milošević M., Nikolić Z., Vujaković M., Petrović D. Characterization of Pseudomonas Savastanoi Pv. Glycinea Isolates from Vojvodina. Phytopathol. Pol. 2007; 45: 43–54.

18. Sarkar S.F., Guttman D.S. Evolution of the Core Genome of Pseudomonas Syringae, a Highly Clonal, Endemic Plant Pathogen. Appl. Environ. Microbiol. 2004; 70: 1999–2012.

19. Evseev P., Lukianova A., Tarakanov R., Tokmakova A., Shneider M., Ignatov A., Miroshnikov K. Curtobacterium Spp. and Curtobacterium Flaccumfaciens: Phylogeny, Genomics-Based Taxonomy, Pathogenicity, and Diagnostics. Current Issues in Molecular Biology. 2022; 44: 889–927.

20. Tegli S., Sereni A., Surico G. PCR-Based Assay for the Detection of Curtobacterium Flaccumfaciens Pv. Flaccumfaciens in Bean Seeds. Lett Appl Microbiol. 2002; 35: 331–337.

21. CIRM–CFBP. International Centre of Microbial Resource (CIRM) – French Collection for Plant-associated Bacteria. INRAE. (last update: 02.09.2022). URL: https:// cirm-cfbp.fr/

22. Chincinska I.A. Leaf Infiltration in Plant Science: Old Method, New Possibilities. Plant Methods. 2021; 17: 83.

23. Salah Eddin K., Marimuthu T., Ladhalakshmi D., Rabindran R., Velazhahan R. A Simple Inoculation Technique for Evaluation of Cotton Genotypes for Resistance to Bacterial Blight Caused by Xanthomonas Axonopodis Pv. Malvacearum. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz. 2005; 112: 321–328.

24. Shine M.B., Fu D. – Q., Kachroo A. Airbrush Infiltration Method for Pseudomonas Syringae Infection Assays in Soybean. Bio-protocol. 2015; 5: e1427.

25. Barak J.D., Gilbertson R.L. Genetic Diversity of Xanthomonas campestris pv. vitians, the Causal Agent of Bacterial Leafspot of Lettuce. Phytopathology. 2003; 93 (5): 596–603.

26. Mansfield J.W. From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity. Mol Plant Pathol. 2009; 10 (6): 721–734.

27. Álvarez-Mejía C., Rodríguez-Ríos D., Hernández-Guzmán G., López-Ramírez V., Valenzuela-Soto H., Marsch R. Characterization of the HrpZ Gene from Pseudomonas Syringae Pv. Maculicola M2. Braz. J. Microbiol. 2015; 46: 929–936.

28. EPPO. Curtobacterium flaccumfaciens pv. flaccumfaciens. Bull. OEPP. 2011; 41: 320–328.

29. Prom L.K., Venette J.R. Races of Pseudomonas Syringae Pv. Glycinea on Commercial Soybean in Eastern North Dakota. Plant Dis. 1997; 81: 541–544.

30. Valdo S.C., Wendland A., Araújo L.G., Melo L.C., Pereira H.S., Melo P.G., Faria L.C. Differential interactions between Curtobacterium flaccumfaciens pv. flaccumfaciens and common bean. Genet Mol Res. 2016; 15 (4).

31. Abo-Moch F., Mavridis A., Rudolph K. Determination of Races of Pseudomonas Syringae Pv. Glycinea Occurring in Europe. J. Phytopathol. 1995; 143: 1–5.


Review

For citations:


Tarakanov R.I. Evaluation of the resistance of soybean cultivars to bacterial diseases on an artifi cial inoculation background. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2022;(5):92-107. (In Russ.) https://doi.org/10.26897/0021-342X-2022-5-92-107

Views: 205


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)