Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

Effects of minimum tillage, fertilizers and herbicides on the dynamics of organic matter and agrochemical properties of sod-podzolic soil when growing spring grain crops and oat-vetch mixtures

https://doi.org/10.26897/0021-342X-2022-2-16-31

Abstract

Minimum tillage is an integral element of resource-saving technologies, which, along with fertilizers and plant protection products, forms the conditions for the sustainable functioning of the entire agroecosystem. This paper presents data for 2015–2018, obtained during a multi-year three-factor experiment in the sowings of spring grain crops (2015, 2017) and oat-vetch mixtures (2016, 2018). The experience included four gradations of the tillage system: moldboard plowing (MP), surface tillage with deep loosening (STDL), surface-ploughing tillage (SPT) and surface tillage (ST); six gradations for fertilizer systems: no fertilizer (F0), N30 (N), straw (St), straw + N30 (StN), straw + NPK (StNPK) and NPK (NPK); two herbicide grades: without herbicides (H0) and with herbicides (H). Application of surface tillage (SP) led to acidification of the top layer by 0.08 (NSR05=0.05) units when growing spring grain crops (2015, 2017). SP increased mobile phosphorus content by 16.5 mg/kg (LSD05=11.9) in the 10–20 cm layer when cultivatihg annual grasses (2016, 2018). Application of STDL, SPT and ST increased the content of exchangeable potassium by 15.7–18.9 mg/kg (LSD05=11.5) in the 0–10 cm layer. SPT led to an increased yield compared to the MP. STDL decreased the yield of oat-vetch mixtures in 2018 by 30.8 cwt/ha (LSD05= 25.2). The introduction of NPK and StNPK contributed to the greatest increase in the content of organic matter, available phosphorus, exchangeable potassium, and the yield of spring grain crops and oat-vetch mixtures. The use of the herbicide in barley crops was accompanied by an increase in crop yield by 2.53 cwt/ha (LSD05=1.11).

About the Authors

Sergey V. Shchukin
Yaroslavl State Agricultural Academy
Russian Federation

Sergey V. Shchukin, PhD (Ag), Associate Professor, Head of the Department of Agronomy

150042, Russian Federation, 58 Tutaevskoe shosse, Yaroslavl

phone: (485) 257–89–58



Ekaterina A. Gornich
Yaroslavl State Agricultural Academy
Russian Federation

Ekaterina A. Gornich, Senior Lecturer, the Department of Technology of Production and Processing of Agricultural Products

150042, Russian Federation, 58 Tutaevskoe shosse, Yaroslavl

phone: (485) 257–89–58



Aleksandr M. Trufanov
Yaroslavl State Agricultural Academy
Russian Federation

Aleksandr M. Trufanov, PhD (Ag), Associate Professor, Professor, the Department of Agronomy

150042, Russian Federation, 58 Tutaevskoe shosse, Yaroslavl

phone: (485) 257–89–58



Alexandr N. Voronin
Yaroslavl State Agricultural Academy
Russian Federation

Alexandr N. Voronin, PhD (Ag), Associate Professor, Associate Professor of the Department of Agronomy

150042, Russian Federation, 58 Tutaevskoe shosse, Yaroslavl

phone: (485) 257–89–58



Natalya V. Vaganova
Yaroslavl State Agricultural Academy
Russian Federation

Natalya V. Vaganova, Ph D. (Ag), Associate Professor, Dean of the Faculty of Agrotechnology

150042, Russian Federation, 58 Tutaevskoe shosse, Yaroslavl

phone: (485) 257–89–58



References

1. Das A., Lyngdoh D., Ghosh P.K., Lal R., Layek J., Idapuganti R.G. Tillage and cropping sequence effect on physico-chemical and biological properties of soil in Eastern Himalayas, India. Soil and Tillage Research. 2018; 180: 182–193.

2. Kladivko E.J. Tillage systems and soil ecology. Soil and Tillage Research. 2001; 61 (1–2): 61–76.

3. Swanepoel P.A. Habig J., du Preez C.C., Snyman H.A., Botha P.R. Tillage effects, soil quality and production potential of kikuyu-ryegrass pastures in South Africa. Grass Forage Science. 2017; 72: 308–321.

4. Lal R., Reicosky D.C., Hanson J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil and Tillage Research. 2007; 93: 1–12.

5. Dendooven L., Gutiérrez-Oliva V.F., Patiño-Zúñiga L., et al. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico. Science of The Total Environment. 2012; 431: 237–244.

6. Swanepoel P.A., Botha P.R., du Preez C.C., Snyman H.A., Labuschagne J. Managing cultivated pastures for improving soil quality in South Africa: challenges and opportunities. African J. Range Forage Sci. 2015; 32: 91–96.

7. Lal R. Challenges and opportunities in soil organic matter research. European Journal of Soil Science. 2009; 60: 158–169.

8. Palm C., Blanco-Canqui H., DeClerck F., Gatere L., Grace P. Conservation agriculture and ecosystem services: an overview. Agriculture, Ecosystems & Environment. 2014; 187: 87–105.

9. Bai X., Huang Y., Ren W. Responses of soil carbon sequestration to climate-smart agriculture practices: a meta-analysis. Glob Change Biol. 2019; 25: 2591–2606.

10. Gao L., Wang B., Li S., Han Y., et al. Effects of different long-term tillage systems on the composition of organic matter by 13C CP/TOSS NMR in physical fractions in the Loess Plateau of China. Soil and Tillage Research. 2019; 194: 104321.

11. Wang H., Wang S., Yu Q., Zhang Y., Wang R., Li J. Wang No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management. 2020; 261: 110261.

12. Li Y., Li Z., Chang S.X., Cui S., Jagadamma S., Zhang Q., Cai Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: implications for conservation agriculture. Science of the Total Environment. 2020; 740: 140147.

13. Du Z., Angers D.A., Ren T., Zhang Q., Li G. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis. Agriculture, Ecosystems & Environment. 2017; 236: 1–11.

14. Gao Q., Ma L., Fang Y., Zhang A., et al. Conservation tillage for 17 years alters the molecular composition of organic matter in soil profile. Science of The Total Environment. 2021; 762: 143116.

15. Vlasenko O.A. Rezhim pitaniya rasteniy v agrochernozemakh v zavisimosti ot priemov osnovnoy obrabotki [Mode of nutrition of plants in agro chernozems depending on the methods of primary tillage]. Vestnik KrasGAU. 2020; 6 (159): 11–19. (In Rus.)

16. Kirkegaard J.A., Conyers M.K., Hunt J.R., Kirkby C.A., Watt M., Rebetzke G.J. Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 2014; 187: 133–145.

17. Franzluebbers A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research. 2002; 66: 95–106.

18. Franzluebbers A.J., Schomberg H.H., Endale D.M. Surface-soil responses to paraplowing of long-term no-tillage cropland in the Southern Piedmont USA. Soil and Tillage Research. 2007; 96: 303–315.

19. Zhao Х., Xue J.F., Zhang X.Q., Kong F.L., Chen F., Lal R., Zhang H.L. Stratification and storage of soil organic carbon and nitrogen as affected by tillage practices in the North China Plain. PLoS One. 2015; 10: e0128873.

20. Hamza M.A., Anderson W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research. 2005; 82: 121–145.

21. Nunes M.R., Denardin J.E., Pauletto E.A., Faganello A., Pinto L.F.S. Mitigation of clayey soil compaction managed under no-tillage. Soil and Tillage Research. 2015; 148: 119–126.

22. Listopadov I.N. Minimalizatsiya, a ne uproshchenie [Мinimization, not simplification]. Zemledelie. 2007; 1: 25–27. (in Rus.)

23. Limousin D., Tessier D. Effects of no-tillage on chemical gradients and topsoil acidification. Soil and Tillage Research. 2007; 92: 167–174.

24. Li Y., Li Z., Cui S., Zhang Q. Trade-off between soil pH, bulk density and other soil physical properties under global no-tillage agriculture. Geoderma. 2020; 361: 114099.

25. Sithole N.J., Magwaza L.S., Mafongoya P.L. Conservation Agriculture and its impact on soil quality and maize yield: A South African perspective. Soil and Tillage Research. 2016; 162: 55–67.

26. Malik A.A., Puissant J., Buckeridge K.M., Goodall T., Jehmlich N., Chowdhury S., Gweon H.S., Peyton J.M., Mason K.E., Blaud A., Clark I.M., Whitaker J., Pywell R.F., Ostle N., Gleixner G., Griffiths R.I. Land use driven change in soil pH affects microbial carbon cycling processes. Nat Commun. 2018; 9: 3591.

27. Salishev L.P., Bakhtizin N.R., Ramazanov R. Ya, Faizov Kh.F. Minimal’naya obrabotka i vosproizvodstvo plodorodiya tipichnogo chernozema [Minimum tillage and reproduction of soil fertility of typical chernozem]. Ufa. 1993: 111. (In Rus.)

28. Shikula N.K., Nazarenko G.V. Minimal’naya obrabotka chernozemov i vosproizvodstvo plodorodiya [Minimum tillage of chernozems and reproduction of soil fertility]. M.: Agropromizdat. 1990: 320. (In Rus.)

29. Pigorev I.Ya., Tarasov S.A. Elementy biologizatsii v tekhnologii vozdelyvaniya ozimoy pshenitsy [Elements of biologization in cultivation Technology of Winter Wheat]. Vestnik OrelGAU. 2014; 5 (50): 102–108. (In Rus.)

30. Neshchadim N.N., Bershatskaya S.I., Garkusha S.V., Kvashin A.A., Dereka F.I. Dlitel’noye 32-letnee primenenie udobreniy na plodorodie chernozema obyknovennogo i produktivnost’ sakharnoy svekly [Long Term 32-Yearold Application of Fertilizers for the ordinary black Soil and productivity of Sugar beet]. Politematicheskiy setevoy elektronniy zhurnal Kubanskogo GAU. 2016; 117: 1338–1353. (In Rus.)

31. Chen X., Jin M., Duan P., Mejia J., Chu W., Ye X., Cao X., Schmidt-Rohr K., Thompson M.L., Gao H., Mao J. Structural composition of immobilized fertilizer N associated with decomposed wheat straw residues using advanced nuclear magnetic resonance spectroscopy combined with 13C and 15N labeling. Geoderma. 2021; 398: 115110.

32. Pegova. N.A. Vliyanie sistem obrabotki i bioresursov na agrokhimicheskie svoystva dernovo-podzolistoy suglinistoy pochvy [Influence of tillage systems and biological resources on the agrochemical properties of soddy-podzolic loamy soil]. Vestnik rossiyskoy sel’skokhozyaystvennoy nauki. 2017; 6: 31–35. (In Rus.)

33. Kolsanov G.V. Soloma kak udobrenie v zernopropashnom sevooborote na chernozeme lesostepi Povolzhia [Straw as a Fertilizer in a Grain-Row Crop Rotation on Forest- Steppe Chernozem of the Volga Region]. Agrokhimiya. 2006; 5: 30–40. (In Rus.)

34. Shchukin S.V., Gornich Е.А., Trufanov А.М., Voronin A.N. Otsenka deystviya energosberegayushchikh tekhnologiy osnovnoy obrabotki pochvy na soderzhanie organicheskogo veshchestva i agrofizicheskiye pokazateli plodorodiya [Assessment of the Effect of Energysaving Primary Tillage Technologies on Organic Matter Content and Agrophysical Grophysical Properties of the Soil]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professionalnoe obrazovanie. 2019; 4 (56): 119–126. (In Rus.)

35. Liang Y., Al-Kaisi M., Yuan J., Liu J., Zhang H., Wang L., Cai H., Ren J. Effect of chemical fertilizer and straw-derived organic amendments on continuous maize yield, soil carbon sequestration and soil quality in a Chinese Mollisol. Agriculture, Ecosystems & Environment. 2021; 314: 107403.

36. Agbede T.M. Effect of tillage, biochar, poultry manure and NPK 15–15–15 fertilizer, and their mixture on soil properties, growth and carrot (Daucus carota L.) yield under tropical conditions. Heliyon. 2021; 7 (6): 07391.

37. Chen Y., Zhang X., He H., Xie H., Yan Y., Zhu P., Ren J., Wang L. Carbon and nitrogen pools in different aggregates of a Chinese mollisol as influenced by longterm fertilization. J. Soils Sediments. 2010; 10: 1018–1026.

38. Rasool R., Kukal S.S., Hira G.S. Soil physical fertility and crop performance as affected by long term application of FYM and inorganic fertilizers in rice-wheat system. Soil and Tillage Research. 2007; 96: 64–72.

39. Celik I., Gunal Н., Budak М., Akpinar С. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma. 2010; 160 (2): 236–243.

40. Wang J. Effects of synthetic nitrogen fertilizer and manure on fungal and bacterial contributions to N2O production along a soil acidity gradient. Science of The Total Environment. 2021; 753: 142011.

41. Shirokikh I.G., Kosolapova A.I., Shirokikh А.А., Zav’yalova N.E. Mikrobnaya transformatsiya organicheskogo veshchestva dernovopodzolistoy pochvy Predural’ya pri razlichnom ispol’zovanii i vnesenii mineral’nykh udobreniy [Microbial Transformation of Organic Matter of Sodpodzolic Soils in the Preurals under conditions of different use and application of mineral fertilizers]. Teoreticheskaya i prikladnaya ekologiya. 2019; 1: 102–110. (In Rus.)

42. Shchukin S.V., Kaznin R.E., Trufanov А.М., Chebykina E.V. Ekologicheskaya rol’ sornykh rasteniy pri primenenii sistem energosberegayushchey obrabotki pochvy [Ecological Role of Annual and Biennial Weed Plants at Application of Energy-Saving Systems of Tillage]. Vestnik APK Verkhnevolzhia. 2012; 3(19): 30–33. (In Rus.)

43. Plotnikov A.M. Produktivnost’ sevooborota i pokazateli kislotnosti pochvy pri ispol’zovanii razlichnykh udobreniy [Crop productivity and soil acidity indicators using various fertilizers]. Vestnik Kurganskoy GSKhA. 2019; 3(31): 13–17. (In Rus.)

44. Sukov A.A., Chukhina O.V., Tokareva N.V., Naliukhin A.N. Osobennosti sistemy udobreniya sel’skokhozyaystvennykh kul’tur na evropeyskom severe Rossii: uchebnoe posobie [Features of the crop fertilization system in the European North of Russia]. Vologda: VGMKhA im. N.V. Vereshchagina. 2018: 207. (In Rus.)

45. Makarov V.I. Biokhimicheskaya shchelochnost’ organicheskikh udobreniy [Biochevikal alkalinity of organic Fertilizers]. Vestnik Altayskogo gosudarstvennogo universiteta. 2016; 6 (140): 48–54. (In Rus.)

46. Deube A., Hofmann B., Orzessek D. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil and Tillage Research. 2011; 117: 85–92.


Review

For citations:


Shchukin S.V., Gornich E.A., Trufanov A.M., Voronin A.N., Vaganova N.V. Effects of minimum tillage, fertilizers and herbicides on the dynamics of organic matter and agrochemical properties of sod-podzolic soil when growing spring grain crops and oat-vetch mixtures. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2022;(2):16-31. (In Russ.) https://doi.org/10.26897/0021-342X-2022-2-16-31

Views: 149


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)