Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

Protoplast technology and somatic hybridization in the Apiaceae family

https://doi.org/10.26897/0021-342X-2025-6-68-78

Abstract

   The Apiaceae family holds a significant market share, currently dominated by open-pollinated varieties. This results in a lack of uniformity and suboptimal quality, necessitating the development of F1 hybrids. Breeding challenges associated with manual flower emasculation have compelled breeders to employ biotechnological approaches, including somatic hybridization, which leverage traits of self-incompatibility and male sterility. Protoplast technology and somatic hybridization have emerged as crucial instruments in the genetic improvement and breeding of Apiaceae crops, such as carrot and celery, which are of significant economic importance but traditionally rely on open-pollinated varieties. This article discusses the application of protoplast fusion technology for generating somatic hybrids and cybrids, as well as in vitro selection targeting commercially important traits such as cytoplasmic male sterility (CMS) and genetic male sterility (GMS), which are critical for hybrid seed production and trait introgression. Information is provided on plant materials and tissues suitable for protoplast isolation. Typically, young leaves, hypocotyls, or cell suspension cultures are utilized as sources owing to their high viability and regenerative potential, alongside various enzyme mixtures employed for cell wall digestion and the release of viable protoplasts. This comprehensive review serves as a valuable resource for researchers and breeders aiming to utilize protoplast fusion technology for the genetic improvement of Apiaceae crops, thereby ultimately contributing to enhanced agricultural productivity and crop quality.

About the Authors

Naseem Aljaramany
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Naseem Aljaramany, post-graduate student

Department of Molecular Breeding, Cell Technologies and Seed Production

127434; 49 Timiryazevskaya St.; Moscow



S. G. Monakhos
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Sokrat G. Monakhos, DSc (Ag), Professor, Head of the Department

Department of Molecular Breeding, Cell Technologies and Seed Production

127434; 49 Timiryazevskaya St.; Moscow



References

1. Gao C. The future of CRISPR technologies in agriculture. Nature Reviews Molecular Cell Biology. 2018;19:275-276. doi: 10.1038/nrm.2018.2

2. Monakhos S.G., Voronina A.V., Baidina A.V., Zubko O.N. Plant breeding for disease resistance is a base of plant protection in organic farming. Potato and Vegetables. 2019;(6):38-40. (In Russ.) doi: 10.25630/PAV.2019.92.83.009

3. Gantai S., Mukherjee E., Jogam P., Babu K.H. etal. Improving crops through transgenic breeding – technological advances and prospects. Advances in Plant Tissue Culture. Current Developments and Future Trends. 2022;1:295-324. doi: 10.1016/B978-0-323-90795-8.00011-4

4. Godwin A., Pieralli S., Sofkova-Bobcheva S., McGill C. Natural genetic adaptation allows flexible reproductive behaviour: the case of wild carrot (Daucus carota L. subsp. carota) vs cultivated carrot (Daucus carota L. subsp. sativus). Crop & Pasture Science. 2025;76: CP24320. doi: 10.1071/CP24320

5. Loarca J., Liou M., Dawson J.C., Simon P.W. Advancing utilization of diverse global carrot (Daucus carota L.) germplasm with flowering habit trait ontology. Frontiers in Plant Science. 2024;15:1342513. doi: 10.3389/fpls.2024.1342513

6. Anisimova I.N., Gavrilenko T.A. Cytoplasmic male sterility and its use in hybrid breeding of crops. Genetics. 2020;56(11):1239-1249. doi: 10.18619/2658-4832-2020-1-10-22

7. Wang X., Luo Q., Li T., Meng P. et al. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. Horticulture Research. 2022;9: uhac076. doi: 10.1093/hr/uhac076

8. Alizhanova R.R., Monakhos S.G., Monakhos G.F. Molecular markers in onion breeding. Potato and Vegetables. 2019;(2):32-35. (In Russ.) doi: 10.25630/PAV.2019.28.2.007

9. Quiros C.F., Rugama A., Dong Y.Y., Orton T.J. Cytological and genetical studies of a male sterile celery. Euphytica. 1986;3:867-875. doi: 10.1007/BF00028594

10. Gu Z.-H. Discovery and botanical characters of celery male sterile material. Tianjin Agricultural Sciences. 2006;12:9-11.

11. Gao G., Jin L., Lu F., Lu Z. et al. Genetic characters of 01-3A male sterile celery. Journal of Changjiang Vegetables. 2009;14:21-23.

12. Cheng Q., Wang P., Li T., Liu J. et al. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in celery (Apium graveolens L.). International Journal of Molecular Sciences. 2021;22(16):8584. doi: 10.3390/ijms22168584

13. Bruznican S., Eeckhaut T., Huylenbroeck J., Keyser A.D. et al. An asymmetric protoplast fusion and screening method for generating celeriac cybrids. Scientific Reports. 2021;1:4543. doi: 10.1038/s41598-021-83970-y

14. Simpson K., Stange C. Carrot protoplasts as a suitable method for protein subcellular localization. In: Methods in Enzymology. Wurtzel E.T. (Ed). 2022;671:273-283. doi: 10.1016/bs.mie.2022.03.006

15. Ranaware A.S., Kunchge N.S., Lele S.S., Ochatt S.J. Protoplast technology and somatic hybridisation in the family Apiaceae. Plants. 2023;12(5):1060. doi: 10.3390/plants12051060

16. Bruznican S., Eeckhaut T., Huylenbroeck J., Clercq D.H. et al. Regeneration of cell suspension derived Apium graveolens L. protoplasts. Plant Cell Tissue Organ Cult. 2017;1:163-174. doi: 10.1007/s11240-017-1273-9

17. Grzebelus E., Skop L. Effect of beta-lactam antibiotics on plant regeneration in carrot protoplast cultures. In Vitro Cellular & Developmental Biology – Plant. 2014;5:568-575. doi: 10.1007/s11627-014-9626-0

18. Maćkowska K., Jarosz A., Grzebelus E. Plant regeneration from leaf-derived protoplasts within the Daucus genus: effect of different conditions in alginate embedding and phytosulfokine application. Plant Cell, Tissue and Organ Culture. 2014;2:241-252. doi: 10.1007/s11240-014-0436-1

19. Meyer C.M., Goldman I.L., Grzebelus E., Krysan P.J. Efficient production of transgene-free, gene-edited carrot plants via protoplast transformation. Plant Cell Reports. 2022;4:947-960. doi: 10.1007/s00299-022-02830-9

20. Ali M., Mujib A., Zafar N., Tonk D. Protoplast isolation and plant regeneration in two cultivated coriander varieties, Co-1 and RS. Biotechnologia. 2018;4:345-355. doi: 10.5114/bta.2018.79965

21. Tan F., Shen H., Wang S., Jink Z. et al. Preliminary study of asymmetric protoplast fusion between celery (Apium graveolens L.) and CMS carrot (Daucus carota L.). Acta Horticulturae. 2009;8:1169-1176.

22. Han L., Zhou C., Shi J., Zhi D. et al. Ginsenoside Rb1 in asymmetric somatic hybrid calli of Daucus carota with Panax quinquefolius. Plant Cell Reports. 2009;4:627-638. doi: 10.1007/s00299-009-0674-6

23. Gieniec M., Siwek J., Oleszkiewicz T., Maćkowska K. et al. Real-time detection of somatic hybrid cells during electrofusion of carrot protoplasts with stably labelled mitochondria. Scientific Reports. 2020;10:18811. doi: 10.1038/s41598-020-75983-w

24. Joo S., Kariyawasam T., Kim M., Jin E. et al. Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA. Nature Communications. 2022;13:1133. doi: 10.1038/s41467-022-28807-6

25. Flores-Tornero M., Sapeta H., Becker J.D. Improving the haploidization toolbox: maternal factors take the stage. Molecular Plant. 2023;16(4):651-653. doi: 10.1016/j.molp.2023.02.008

26. Begna T. Intergeneric somatic hybridization and its application to crop genetic improvement. International Journal of Research Studies in Agricultural Sciences. 2020;6:25-37. doi: 10.20431/2454-6224.0606004

27. Zubareva I.A., Vinogradova S.V., Gribova T.N., Monakhos S.G. et al. Genetic diversity of turnip mosaic virus and the mechanism of its transmission by brassica seeds. Biochemistry and Biophysics. 2013;1:119-122. doi: 10.1134/S1607672913030034

28. Lu L., Lim Y.P., Monakhos S.G., Yi S.Y. Early defense mechanisms of Brassica oleracea in response to attack by Xanthomonas campestris pv. campestris. Plants. 2021;10(12):2705. doi: 10.3390/plants10122705


Review

For citations:


Aljaramany N., Monakhos S.G. Protoplast technology and somatic hybridization in the Apiaceae family. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2025;(6):68-78. (In Russ.) https://doi.org/10.26897/0021-342X-2025-6-68-78

Views: 76

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)