Preview

IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY

Advanced search

DNA profiling and phenotyping of sugar beet (Beta vulgaris l.) parental components and hybrids

https://doi.org/10.26897/0021-342X-2025-5-66-82

Abstract

Using DNA profiling and phenotyping, 10 parental lines and 10 hybrids of sugar beet from domestic and Belarusian breeding programs were studied. Twelve microsatellite loci exhibited a high level of polymorphism information content (PIC), ranging from 0.55 to 0.83, with the highest value observed at locus Unigene 17623B (PIC = 0.83). Approximately 92% of loci across all samples possessed dominant alleles present in more than half of the samples. Among all alleles across all loci, about 55–60% were dominant (frequency > 50%), 25–30% were of intermediate frequency (20%–50%), and around 10–15% were rare alleles (frequency < 20%), indicating high conservation alongside maintained genetic diversity due to existing allelic variability. Cluster analysis performed based on the Jaccard distance matrix using the UPGMA algorithm in the PAST software delineated the 10 hybrids according to breeding groups (Ramonskaya, Lgovskaya, and Belarusian), parental relatedness, and ploidy level. The hybrid “Polibel” showed the lowest similarity to other hybrids (mean Jaccard index of 0.416), whereas the hybrid “Konkurs” exhibited the highest similarity (0.592) to the sample set. Based on genetic profiles obtained with a panel of polymorphic markers, unique molecular genetic passports were developed for the 10 hybrids. An evaluation of genotype data from the Ramonskaya, Lgovskaya, and Belarusian breeding programs was conducted over 27 biomorphological traits, including those characteristics regulated by the State Commission of the Russian Federation for Testing and Protection of Breeding Achievements (FSBI “Gossortkomissiya”) registration guidelines for hybrids.

About the Authors

A. A. Nalbandian
A.L. Mazlumov All-Russian Research Institute of Sugar Beet of Russian Agricultural Academy
Russian Federation

Arpine A. Nalbandian, CSc (Bio), Leading Research Associate, Head of the Laboratory of Marker Assisted Selection

86, VNIISS Vlg., Ramonsky District, Voronezh Region, 396030



T. P. Fedulova
A.L. Mazlumov All-Russian Research Institute of Sugar Beet of Russian Agricultural Academy
Russian Federation

Tatyana P. Fedulova, DSc (Bio), Chief Research Associate at the Laboratory of Marker Assisted Selection

86, VNIISS Vlg., Ramonsky District, Voronezh Region, 396030



I. V. Cherepukhina
A.L. Mazlumov All-Russian Research Institute of Sugar Beet of Russian Agricultural Academy
Russian Federation

Irina V. Cherepukhina, CSc (Bio), Senior Research Associate at the Laboratory of Marker Assisted Selection

86, VNIISS Vlg., Ramonsky District, Voronezh Region, 396030



T. S. Rudenko
A.L. Mazlumov All-Russian Research Institute of Sugar Beet of Russian Agricultural Academy
Russian Federation

Tatyana S. Rudenko, Research Associate at the Laboratory of Marker Assisted Selection

86, VNIISS Vlg., Ramonsky District, Voronezh Region, 396030



S. A. Melenteva
Experimental Scientific Station for Sugar Beet
Belarus

Svetlana A. Melenteva, Deputy Director for Science 

1 Ozernaya St., Nesvizh, Minsk Region, 222603 



References

1. Shalaeva T.V., Aniskina Yu.V., Kolobova O.S., Velishaeva N.S. et al. Investigation of the sugar beet (Beta vulgaris L. ssp. vulgaris) microsatellite loci structure to develop a technology for genetic analysis of sugar beet lines and hybrids. Agricultural Biology. 2023;58(3):483-493. (In Russ.) https://doi.org/10.15389/agrobiology.2023.3.483rus

2. Nalbandyan A.A., Fedulova T.P., Cherepukhina I.V., Rudenko T.S. et al. Molecular genetic identification and certification of sugar beet hybrids using microsatellite markers. Izvestiya of Timiryazev Agricultural Academy. 2024;(4):70-88. (In Russ.) https://doi.org/10.26897/0021-342X-2024-4-70-88

3. Smulders M., Esselink G., Danny G., Riek J. et al. Characterisation of Sugar Beet (Beta vulgaris L. ssp. vulgaris) Varieties Using Microsatellite Markers. BMC Genetics. 2010;11:41. https://doi.org/10.1186/1471-2156-11-41

4. Fugate K., Fajardo D., Schlautman B., Ferrareze J.P. et al. Generation and Characterization of a Sugar Beet Transcriptome and Transcript-based SSR Markers. The Plant Genome. 2014;7(2):1-13. https://doi.org/10.3835/plantgenome2013.11.0038

5. Mason A.S. SSR Genotyping. Methods Mol Biol. 2015;1245:77-89. https://doi.org/10.1007/978-1-4939-1966-6_6

6. Yang J., Zhang J., Han R., Zhang F. et al. Target SSR-Seq: A Novel SSR Genotyping Technology associate with perfect SSRs in genetic analysis of cucumber varieties. Front. Plant Sci. 2019;10:531. https://doi.org/10.3389/fpls.2019.00531

7. Liuhuizi D., Zhi P., Zedong W. Construction of SSR Fingerprint and Analysis of Genetic Diversity of Sugar Beet Varieties. J. Crops. 2021;37(5):72-78. https://doi.org/10.16035/j.issn.1001-7283.2021.05.011

8. Amangeldiyeva A., Daniyarova A., Tabynbayeva L., Bastaubayeva S. et al. Assessment of the Genetic Diversity in Sugar Beet (Beta vulgaris L.) Using SSR Markers. SABRAO J. Breed. Genet. 2023;55(5):1616-1628. https://doi.org/10.54910/sabrao2023.55.5.15

9. Celik I. Genome-wide Development and Physical Mapping of SSR Markers in Sugar Beet (Beta vulgaris L.). Journal of the Institute of Science and Technology. 2023;13(1):112-119. https://doi.org/10.21597/jist.1187003

10. Nadeem M., Nawaz M., Shahid M. DNA Molecular Markers in Plant Breeding: Current Status and Recent Advancements in Genomic Selection and Genome Editing. Biotechnol. Biotechnol. Equip. 2018;32(2):261-285. https://doi.org/10.1080/13102818.2017.1400401

11. Taheri S., Abdullah L., Yusop M., Hanafi M. et al. . Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules. 2018;23(2):399. https://doi.org/10.3390/molecules23020399

12. Nalbandyan A.A., Fedulova T.P., Kryukova T.I., Cherepukhina I.V. et al. Polymorphic microsatellite markers to study sugar beet’s (Beta vulgaris L.) genetic diversity. Russian Agricultural Sciences. 2023;49:1-7. https://doi.org/10.3103/S1068367423010123

13. Testolin R., Messina R., Cipriani G., De Mori G. SSR-based DNA Fingerprinting of Fruit Crops. Hortic. Rev. 2023;63(2):390-459. https://doi.org/10.1002/csc2.20896

14. Shavrukov Y., Hinrichsen P., Watanabe S. Editorial: Plant Genotyping: from Traditional Markers to Modern Technologies. Front. Plant Sci. 2024;15:1419798. https://doi.org/10.3389/fpls.2024.1419798

15. Yankovskaya A.A., Knyazeva I.V., Upadishev M.T. Molecular marking and genetic certification: application in plant breeding, biotechnology and identification of horticultural crops. Horticulture and Viticulture. 2019;(5):5-11. (In Russ.) https://doi.org/10.31676/0235-2591-2019-5-11

16. Rybakov D.А., Аntonova O.Yu., Chukhina I.G., Fomina N.А. et al. Nomenclatural standards and genetic passports of potato cultivars bred in the A.G. Lorkh All-Russian Research Institute of Potato Farming. Biotekhnologiya i selekciya rastenij. 2020;3(4):5-52. (In Russ.) https://doi.org/10.30901/2658-6266-2020-4-o1

17. Yin J., Zhao H., Wu X., Ma Y. et al. SSR Marker-Based Analysis for Identification and of Genetic Diversity of Non-Heading Chinese Cabbage Varieties. Front. Plant Sci. 2023;14:1112748. https://doi.org/10.3389/fpls.2023.1112748

18. Sato S., Isobe S., Asamizu E., Ohmido N. et al. Comprehensive Structural Analysis of the Genome of Red Clover (Trifolium pratense L.). DNA Res. 2005;12(5):301-364. https://doi.org/10.1093/dnares/dsi018

19. Bazanov T.A., Ushapovskiy I.V., Loginova N.N., Smirnova E.V. et al. Molecular genetic diversity of flax cultivars (Linum usitatissimum L.) represented in the State Register for Breeding Achievements of the Russian Federation. Proceedings on Applied Botany, Genetics and Breeding. 2023;184(1):163-176. (In Russ.) https://doi.org/10.30901/2227-8834-2023-1-163-176

20. Makarov A.M. Phenotypic variability of morphobiological traits in sugar beet breeding: CSc (Ag) thesis. Voronezh, Russia, 2004:126. (In Russ.)

21. Desai S., Ramesh S., Vaijayanthi P., Mohan R. SSR Markers Assay-Based Establishment of Distinctness, Uniformity and Stability of Dolichos Bean [Lablab purpureus (L.) Sweet var. Lignosus] Advanced Breeding Lines and Elite Germplasm Accessions. Genet Resour Crop Evol. 2021;68:1309-1314. https://doi.org/10.1007/s10722-021-01128-1

22. McGrath J.M., Trebbi D., Fenwick A., Panella L. et al. An Open-Source First-Generation Molecular Genetic Map from a Sugarbeet x Table Beet Cross and Its Extension to Physical Mapping. Plant Gen. 2007;1:27-44. https://doi.org/10.2135/cropsci2006-05-0339tpg

23. Richards Ch., Brownson M., Mitchell Sh., Kresovich S., Panella L. Polymorphic Microsatellite Markers for Inferring Diversity in Wild and Domesticated Sugar Beet (Beta vulgaris L.). Mol. Ecol. Notes. 2004;4:243-245. https://doi.org/10.1111/j.1471-8286.2004.00630.x

24. Botstein D. A theory of Modular Evolution for Bacteriophages. Ann N Y Acad Sci. 1980;354(1):484-90. https://doi.org/10.1111/j.1749-6632.1980.tb27987.x

25. Zhang S., Wu X., You Z. Jaccard Distance Based Weighted Sparse Representation for Coarse-to-Fine Plant Species Recognition. PLoS ONE. 2017;12(6): e0178317. https://doi.org/10.1371/journal.pone.0178317

26. Fu Y.Bi. Applications of Bulking in Molecular Characterization for Plant Germplasm: A Critical Review. Plant Genet. Res. 2003;1(2-3):161-167. https://doi.org/10.1079/PGR20032

27. Klimenko I.A., Kozlov N.N., Kostenko S.I., Shamustakimova A.O. et al. Identification and certification of forage grass varieties (meadow clover, variable alfalfa, common alfalfa and hop grass) based on DNA markers. Guidelines. Moscow, Russia: Ugresha T, 2020:35. (In Russ.)


Review

For citations:


Nalbandian A.A., Fedulova T.P., Cherepukhina I.V., Rudenko T.S., Melenteva S.A. DNA profiling and phenotyping of sugar beet (Beta vulgaris l.) parental components and hybrids. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2025;1(5):66-82. (In Russ.) https://doi.org/10.26897/0021-342X-2025-5-66-82

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-342X (Print)