Persistence of tomato pathogens and associated microorganisms on trellises after three years of overwintering
https://doi.org/10.26897/0021-342X-2025-6-114-126
Abstract
This study determined the persistence of tomato pathogens (Solanum lycopersicum L.) on wooden trellises and their garters after three years of outdoor overwintering, followed by nine months of indoor storage at positive temperatures. The trellises were initially used in a plot with nine tomato varieties and hybrids during a pathogen epiphytotic in 2021 in the Kimry District, Tver Region. The trellises consisted of miscanthus stalks and wooden laths with garter materials (twine). Microorganisms were identified by rinsing the trellises and garters, followed by microscopic analysis using a Lomo Mikmed microscope equipped with a digital camera. The persistence of microorganisms was assessed based on the colonization rate (%) of trellises and garters by viable pathogens and associated microorganisms. Following the designated storage period, the following pathogens were detected: Cladosporium fulvum, Alternaria alternata, Phytophthora infestans, Phoma spp., and Epicoccum spp. Additionally, associated microorganisms such as Trimmatostroma spp., protococcoid algae (Protococcophyceae), and cyanobacteria were found. During the three-year storage period, approximately 2030 mm of precipitation occurred, and the minimum temperature reached –31.9 °C. After three years of outdoor overwintering, at least four major tomato disease agents persisted on the trellises. These experimental data on such long-term survival of tomato infection on trellises have been obtained for the first time and highlight the necessity of incorporating measures for the destruction or thorough disinfection of used trellises and garters after harvest into tomato cultivation guidelines.
About the Authors
S. Ya. PopovRussian Federation
Sergei Ya. Popov, DSc (Bio), Professor, Professor at Department
Department of Plant Protection
127434; 49 Timiryazevskaya St.; Moscow
A. N. Smirnov
Russian Federation
Aleksey N. Smirnov, DSc (Bio), Professor, Professor at Department
Department of Plant Protection
127434; 49 Timiryazevskaya St.; Moscow
References
1. FAO (Data Page: Tomato production). In: Ritchie H., Rosado P., Roser M. Agricultural Production. 2023. URL: https://archive.ourworldindata.org/20250731-180103/grapher/tomato-production.html (accessed: July 31, 2025).
2. Moine L.M., Labbé C., Louis-Seize G., Seifert K.A. et al. Identification and detection of Fusarium striatum as a new record of pathogen to greenhouse tomato in Northeastern America. Plant Disease. 2014;98:292-298. doi: 10.1094/PDIS-08-13-0844-RE
3. Ma M., Taylor P.W.J., Chen D., Vaghefi N. et al. Major Soilborne pathogens of field processing tomatoes and management strategies. Microorganisms. 2023;11(2):263. doi: 10.3390/microorganisms11020263
4. Simões D., de Andrade Silva E. Fusarium species responsible for tomato diseases and mycotoxin contamination and biocontrol opportunities. In: Fusarium – Recent Studies. Abdurakhmonov I.Y. (Ed). London, UK: IntechOpen, 2024. doi: 10.5772/intechopen.1003643
5. Plant protection in sustainable land use systems. Book 1 : a textbook and practical handbook. Shpaar D. (Ed). Torzhok, Russia: Variant, 2003:392. (In Russ.)
6. Fundamentals of plant pathology. Tarr S.; Dunin L.M., Klyachko N.L. (Transl); Dunin M.S. (Ed). Moscow, USSR: Mir, 1975:587. (In Russ.)
7. Turkensteen L.J., Flier W.G., Wanningen R., Mulder A. Production, survival and infectivity of oospores of Phytophthora infestans. Plant Pathology. 2000;49(6):688-696. doi: 10.1046/j.1365 3059.2000.00515.x
8. Drenth A., Janssen E.M., Govers F. Formation and survival of oospores of Phytophthora in festans under natural conditions. Plant Pathology. 1995;44(1):86-94. doi: 10.1111/j.13653059.1995.tb02719.x
9. Kuznetsova M.A., Ulanova T.I., Rogozhin A.N., Smetanina T.I. et al. Role of oospores in the overwintering and year-on-year development of the late blight pathogen on tomato and potato. PPO-Special Report. 2010;14:223-230.
10. Basu P.K. Existence of chlamydospores of Alternaria porri f. sp. solani as overwintering propagules in soil. Phytopathology. 1971;61:1347-1350. doi: 10.1094/Phyto-61-1347
11. Ecologized plant protection in vegetable growing, horticulture, and viticulture. Book 1 : a textbook and practical handbook. Shpaar D. (Ed). St. Petersburg, Pushkin, Russia: Innovation Center for Plant Protection, 2005:336. (In Russ.) EDN: QKXVYP
12. Popov S.Ya., Smirnov A.N. New data on the survival of tomato pathogens after overwintering. Agricultural Biology. 2024;59(3):561-570. (In Russ.) doi: 10.15389/agrobiology.2024.3.561rus
13. McCovern R.J. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection. 2015;73:78-92. doi: 10.1016/j.cropro.2015.02.0210261-2194
14. Satou M., Shizonaki T., Nishi K., Kubota M. Leaf mold tomato caused by races 4 and 4.11 of Passalora fulva in Japan. Journal of General Plant Pathology. 2005;71:436-437. doi: 10.1007/s10327-005-0223-2
15. Smirnov A.N., Kuznetsov S.A. Tomato late blight. Plant Protection and Quarantine. 2006;(3):20-23. (In Russ.)
16. Ignatov A.N., Koshkin E.I., Andreeva I.V., Guseinov G.G. et al. Impact of global climate change on plant pathogens occurrence. Agrohimia. 2020;(12):81-96. (In Russ.) doi: 10.31857/S0002188120120042
17. Popov S.Ya., Dmitrieva S.V. Phenology of the apple blossom weevil, Anthonomus pomorum (L.) (Coleoptera, Curculionidae), on apple trees in Moscow on the background of global warming. Entomologicheskoe Obozrenie. 2022;101(4):675-690. (In Russ.) doi: 10.31857/S0367144522040013
18. Iida Y., van ̒t Hof P., Beenen H., Mesarich C. et al. Novel mutations detected in avirulence genes overcoming tomato Cf resistance genes in isolates of a Japanese population of Cladosporium fulvum. PLoS ONE. 2015;10(4): e0123271. doi: 10.1371/journal.pone.0123271
19. Sudermann M.A., McGilp L., Vogel G., Regnier M. et al. The diversity of Passalora fulva isolates collected from tomato plants in U.S. high tunnels. Phytopathology. 2022;112(6):1350-1360. doi: 10.1094/PHYTO-06-21-0244-R
20. Novak A., Ćosić J., Vrandečić K., Jurković D. et al. Characterization of tomato leaf mould pathogen, Passalora fulva, in Croatia. Journal of Plant Diseases and Protection. 2021;128:1041-1049. doi: 10.1007/s41348-020-00419-6
21. Fry W.E., Birch P.R.J., Judelson H.S., Grünwald N.J. et al. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology. 2015;105(7):966-981. doi: 10.1094/PHYTO-01-15-0005-FI
22. Saville A.C., Martin M.D., Ristaino J.B. Historic late blight outbreaks caused by a widespread dominant lineage of Phytophthora infestans (Mont.) de Bary. PloS ONE. 2016;11(12): e0168381. doi: 10.1371/journal.pone.0168381
23. Zolfaghari A., Antonenko V.V., Zaitsev D.V., Ignatenkova A.A. et al. Late and early blight of potato and tomato under the abnormal weather conditions of Moscow Region. Late blight and alternaria of potatoes and tomatoes under abnormal weather conditions in the Moscow Region. Plant Protection and Quarantine. 2011;(12):40-42. (In Russ.)
24. Chaerani R., Voorrips R.E. Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. Journal of General Plant Pathology. 2006;72:335-347. doi: 10.1007/s10327-006-0299-3
25. Colmán A.A., Janaina L. Alves J.L., da Silva M. et al. Phoma destructiva causing blight of tomato plants: a new fungal threat for tomato plantations in Brazil? Tropical Plant Pathology. 2018;43:257-262 doi: 10.1007/s40858-017-0200-2
26. Aumentado H.D.R., Balendres M.A.O. Identification of Epicoccum poaceicola causing eggplant leaf spot and its cross-infection potential to other solanaceous vegetable crops. Archives of Phytopathology and Plant Protection. 2023;56(11):872-888. doi: 10.1080/03235408.2023.2227328
Review
For citations:
Popov S.Ya., Smirnov A.N. Persistence of tomato pathogens and associated microorganisms on trellises after three years of overwintering. IZVESTIYA OF TIMIRYAZEV AGRICULTURAL ACADEMY. 2025;(6):114-126. (In Russ.) https://doi.org/10.26897/0021-342X-2025-6-114-126
JATS XML













